初等代数研究 解不等式

$\sqrt[3]{2-x}+\sqrt{x-1}$$>1$
已邀请:

Math001

赞同来自:

因为$1\leq x\leq 2$,所以
$\sqrt[3]{2-x}+\sqrt{x-1}\geq\sqrt{2-x}+\sqrt{x-1}\geq\sqrt{(2-x)+(x-1)}=1$
当且仅当$x=2$时等号成立。

要回复问题请先登录注册