2018年8月

万物皆数:被上帝选中的幸运儿皆是数学世界中的一种计算方式

 

长久以来,“随机”的问题就令人着迷。从史前时代起,原始人就观察到了一系列不能够解释、不符合常理的现象,这些现象没有什么明显的原因,纯粹是来自大自然的“馈赠”。在最初,人们找不到什么更好的解释,于是他们归咎于神灵。日食、彩虹、地震、瘟疫、洪水或者彗星都被视为来自上天的神圣消息,只有那些能够与上天“对话”的“专业人士”才能解读。于是,这个任务往往被交给巫师、神使、祭司或者其他的萨满,这些人会在大众面前做一场全套的仪式(这就是他们谋生的手段),用来质问神灵,因为他们不再想等待让这些随机事件自己出现。换句话说,古代的人们已经开始想方设法地自己创造出“随机”效果。

“孛罗芒西”(La bélomancie),或者称之为“箭卜术”,就是非常古老的例子之一。对于想要问神的问题,将可能的各种答案写在箭身之上,然后把这些箭放在箭筒之中,摇晃箭筒并且随机抽取出一根:这就是神的回答。举例来说,公元前6世纪,古巴比伦国王尼布甲尼撒二世就是用这种方法选择他的敌人,进而发动战争。除了箭之外,人们用来抽签的物品简直多种多样:小石头、黏土片、小木棍或者彩色球。古罗马人给这些物品起了个名字叫“离者”(sors),法语中“抽签”(tirer au sort)一词的字面意思就是“抽出离者”。类似的还有“ 巫术”(sortilège)一词,这个词的原意有两个?质问神灵或者来自神灵的审判。

慢慢地,“抽签随机”的机制流传开来,在很多的应用中都能发现它们的身影。一些政治系统曾经使用过它们,比如在古代的雅典,人们用这种方法选出参加众议院五百人会议的市民,又比如,在几个世纪之后的威尼斯,人们把这种方法用在了总督任命的程序之中。“随机”同样也是游戏创作者们的重要灵感来源。人们利用它发明了猜硬币正反面游戏、带编号的色子(当然还借助了柏拉图立体的外形),甚至卡牌游戏。

正是这种能够“传递神的旨意”的随机游戏,最终吸引了一些数学家的注意力。这些数学家开始有了“玩儿转命运测量器”的奇怪想法,通过逻辑和运算,他们研究了未来将会发生的事情的概率。

所有这一切都始于17 世纪中叶巴黎科学会?博向所有与会者提出了一个他自己构思的问题。他说,试想一下,有两个玩家在玩儿随机游戏并且押了钱,先赢得3局者胜出,当玩儿到2∶1的时候,游戏被中断了,试问这两位玩家该如何分割赌桌上的赌注?


在当日与会的所有科学家中,有两个法国学者对这个问题产生了特别的兴趣,他们是皮埃尔·德·费马和布莱兹·帕斯卡。在几封书信往来之后,这两位学者最终得出的结论是,第一位玩家应该获得四分之三的赌注,第二位玩家应该获得四分之一的赌注。


为了得出这一结论,两位学者演绎了假设游戏没有被中断的、各种可能发生的场景,然后估算了玩家1和玩家2各自的获胜概率。于是,在假想的“下一轮”游戏中,玩家1有50%的概率获胜,而玩家2也有50%的概率获胜。在这种情况下,两位玩家就需要再来一轮,而这一轮当中,两位玩家的获胜概率依然是相等的,也就是说,两位玩家分别获胜的场景都有25%的概率会发生。所有关于这个游戏“未来”的可能走向,可以用下页的图表来表示。


总之,我们可以看到,在未来,玩家1有75%的概率获胜,而玩家2只有25%的概率获胜。于是,帕斯卡和费马一致认为,两者应该按照同样的比例分割赌注:玩家1拿75%,玩家2拿25%。

 


两位法国学者的推论过程可以说非常富有成效, 大部分博弈游戏( 概率游戏) 都能够用这种方法来检验。瑞士数学家雅各布· 伯努利是第一批紧跟帕斯卡和费马脚步的学者之一, 他在17 世纪尾声的时候撰写了《猜度术》(Ars Conjectandi )一书,这本书在1713 年伯努利死后出版。在这本书中,伯努利分析了经典博弈游戏,并且首度提出了概率论中的基本原则之一:大数定律。

 

 

这条定律确认了,在随机试验中,我们重复的次数越多,结果的平均值就越明显,并且趋近于一个极限值。换句话说,从长期来看,即使是最复杂的随机,最终都会产生一个平均行为,因此,所谓的“随机”也就不再存在了。

 

为了理解这个现象,我们倒是不必离题太远,只需要一个简单的“猜硬币正反面”游戏就能感受到大数定律的存在。假设我们投掷一枚硬币,正反面均匀,每一面都有50% 的概率朝上,可以用以下直方图来表示。

 

 

现在,假设你连续投掷硬币两次,并且记录正面和背面朝上的次数。有三种可能:两次都是反面,或者两次都是正面,或者一次正面一次反面。人们很容易认为这三种情况发生的概率是相同的,但事实却并非如此。实际上,出现一正一反的可能性为50%,而出现两次正面或者两次反面的概率都只有25%。

 

 

这种“不平衡”的结果,实际上是由于“两次不同的随机过程可能产生同样的最终结果”所导致的。当我们连续投掷两次硬币的时候,实际上会产生以下四种情况:反―反,反―正,正―反和正―正。反―正和正―反两种情况产生的是同一种结果,即一正一反,这就解释了为什么一正一反出现的概率是其他情况的两倍。类似地,玩家们都会知道,如果我们同时投掷两枚色子,它们的点数和等于7 的概率要远远高于等于12 的概率,因为等于7 的情况有很多种(1 + 6,2 + 5,3 + 4,4 + 3,5 + 2 和6 + 1),而等于12 的情况只有一种(6 + 6)。

我们投掷的次数越多,这个现象就越明显。最初出现机会均等的那些场景逐渐地产生区隔,一些成了极少数,一些成了普遍情况。如果你连续投掷10 次硬币, 会有大约66%的概率得到4 ~ 6 次反面;如果你连续投掷100 次硬币,有96% 的概率会得到40 ~ 60 次反面; 如果你连续投掷1000次硬币, 有99.999 999 98% 的概率会得到400 ~ 600 次反面。

如果我们分别画出投掷10 次、100 次和1000 次的直方图, 就可以看到,逐渐地,绝大多数“未来的可能”围绕着中心轴收紧,以至于那些对应着极端情况的矩形,我们的肉眼已经看不见了。

 

总之,正如大数定律所断言的那样:无限次地重复某个随机试验,最终的平均结果必然不再是随机的,而是无限接近一个极限值。

这一原则是测验调查和其他数据统计的操作基础。在某一人群中,选择1000 人,问他们更喜欢黑巧克力还是牛奶巧克力。如果600 人回答黑巧克力,400 人回答牛奶巧克力,则很有可能在整个群体中?哪怕这个群体总数有几百万人?比例仍然是一样的,60% 的人喜欢黑巧克力,40% 的人喜欢牛奶巧克力。调查某个随机抽取的人的口味可以被认为是一个和扔硬币猜正反面游戏相同的随机实验,只是我们的选项从正面和反面换成了黑巧克力和牛奶巧克力。

当然了,我们可能运气不好,正好抽到了1000 个人全都更喜欢黑巧克力,或者1000 个人全都更喜欢牛奶巧克力。但是这种极端情况发生的概率也是极端小的,因为大数定律向我们保证了,只要随机抽取的样本足够大,所获得的结果就有非常大的可能会接近整个人口的平均值。

进一步考察多种场景和它们在未来可能发生的概率,我们还可以建立一个置信区间,并且评估错误的风险。比如,我们可以说,有95%的可能会出现如下情况,即这个人群中喜欢黑巧克力的人数比例在57%~63%之间。实际上,任何缜密的调查研究都应该总是能获得这些可以显示其精确度和可靠性的数字。

当你喝醉走路时,你知道你找到了圆周率吗?

原文作者:RHETT ALLAIN,东南路易斯安娜大学物理副教授。

翻译作者,radium,哆嗒数学网翻译组成员。

校对,Math001。

 

关注微信:哆嗒数学网 每天获得更多数学趣文

新浪微博:http://weibo.com/duodaa

 

 

 

宛如来到一个不曾发现的海域,最妙的事情莫过于你可以通过一种新的方式找到圆周率的值,比如说,醉汉走路式的随机游走。那么问题来了,什么是随机游走?好问题!我现在就来告诉你。

你站在某个位置上开始走动。最简单的情况就是从x=0这个位置上开始。如同抛掷一枚硬币,正面?漂亮,我们向右移动一个单位。反面?也行,我们就向左移动一个单位。只要你开心,重复这个过程,那么恭喜你,你实现了一维上的随机游走。通常的,我倾向于画一个图来解释这个过程,但是今天我将用python中的随机游走代码来替代它。来看这个代码。


n=0

ball=sphere(pos=vector(0,0,0), radius=0.1, color=color.yellow)
attach_trail(ball)

start=sphere(pos=vector(0,0,0), radius=0.2, color=color.red)

while n<100:
  rate(5)
  temp=random()
  
  if temp<0.5:
    ball.pos.x=ball.pos.x+1
  
  else:
    ball.pos.x=ball.pos.x-1
  n=n+1
ball.color=color.cyan
ball.radius=0.2
start.radius=0.2

练习代码将帮助你理解具体的过程,但我也将伪代码展现出来了。

从0到1中提取随机数
如果数字小于0.5,向x轴的正方向移动
如果数字大于0.5,向x轴的负方向移动
重复这个过程,直到你百无聊赖为止

但是随机游走一步就太没意思了,在次数较多的情况下又会发生什么情况呢?现在设置重复100步,当然,我一次性跑完,我将在-100到100之间的任何地方。但是如果我将这100步运行1000次,我就可以计算出平均情况下我会落在哪个地方。这个直方图展示了一维情况下,1000次100步的随机游走:


这样我就找到了一个点来描述平均位置,但为什么要这么麻烦呢?似乎很显然终点位置的平均值就在原点啊。可以理解,如果每一次我都是一相同的概率不是向左走就是向右走,很多次之后,那么我向左走的步数等于向右走的步数,好像也是,我会回到原点。

那么我们画一个从原点到终止点的总距离的图像又会怎样呢?x轴的值是取的是位移的绝对值,和从开始到结束的总距离一样。

 

 

是的,事实上,这看起来很疯狂,平均的距离(不是位置)是7.848而不是0.但这也是合理的,如果你看第一个直方图,x的最终位置出现次数最多的是在x=0这个点上。但是x=-1和x=1的总次数超过了x=0上的值,而且也是取的正值,这两件事便导致了非零的平均位移。

好吧,为了不让你等太久,那我们就一起去寻找π。所以我将给你一些“派”因为我通常在π节吃派(开个玩笑,我经常在π节写π才是正道)。当然,你已经意识到随机游走的平均位移由步数所决定,恩,是这样的,但对吗?但是它将证明平均位移也由π决定。我们给出关系如下(祈求你不要叫我推导它):

 


在这个表达式中,n是步数,从中,我们可以用随机游走去寻找pi的值。“A计划”如下:一次随机游走10步(做1000次,取平均值)。重复这个过程,再一次随机游走20步,30步,以及更多。如果你画一个平均位移平方关于步数的关系图,你可以得到一条斜率为2/π的直线:

 

 

这里的斜率为0.631,因为它等于2/pi,所以我们可以得到pi值为3.1696.不太精确(π=3.1415....),但对我来说已经足够接近了。这意味着,你可以在那个区域内做一条直线去更好的估计pi。你可以通过改变每一次游走的步数去估计。当你在程序中输入更多的步数(例如1000步),嗯,我可能应该输入更多的步数,因为这样更精确。啊哦,好吧你可以去胡搞瞎搞一下。


二维的随机游走

 

也许这就是爱情吧,我被随机游走深深的迷住了。但总在我快要失去控制时,有人把我拉回来了。在这期间我也做了一个二维的随机游走。就像一维的随机游走一样,这时,我的每一步就有4种选择—+x, -x, +y, -y。对的,这仍然是一个离散的随机游走(一个格子状的随机游走),每一步都只有一个单位,因此我也只在坐标轴上的整数值位置。

这就是我可视化的二维随机游走100步的代码,只要你开心,你可以随意修改它。


n=0
ball=sphere(pos=vector(0,0,0), radius=0.1, color=color.yellow)
attach_trail(ball)
start=sphere(pos=vector(0,0,0), radius=0.3, color=color.red)
while n<100:
  rate(25)
  temp=random()

  if temp<0.25:
    ball.pos.x=ball.pos.x+1
  elif (temp>=0.25 and temp<0.5):
    ball.pos.x=ball.pos.x-1
  elif (temp>=0.5 and temp<0.75):
    ball.pos.y=ball.pos.y+1
  else:
    ball.pos.y=ball.pos.y-1

  
  
  n=n+1
ball.color=color.cyan
ball.radius=0.5
start.radius=0.5

为了更“好看”,我改变了两个小球的大小和颜色,代表随机游走开始和结束的位置。看着“醉汉”在哪里乱窜,好吧,好玩吧!来,让我们来看一些有用的干货。我随机游走100步,重复1000次,平均位移会是多少呢?你期待的直方图如下:

 


直方图告诉我们平均位移为8.820个单位。也许这不是太坏的结果,就像之前的一维随机游走一样,你可以找出平均位移和步数之间的关系:

 


见证奇迹的时刻,我再一次绘出了平均位移的平方和步数之间在关系图,在这一个例子中,斜率为π除4.

 


从数据中的到的斜率,我们得到了π的值为3.136,哇哦,不太差。但这仍不是最好的方法,但很有趣哦~

 

让我们再随机游走一次

 

我保证这是最后一次随机游走了,至少在这篇帖子上是这样。这次游走仍然在二维,但有一点不同,哪有“醉汉”只在x轴或y轴方向上移动的啊?我们让每一步都成一个随机的角度进行游走。这就意味着我的走动不一定停在一个整数点上。


n=0
ball=sphere(pos=vector(0,0,0), radius=0.1, color=color.yellow)
attach_trail(ball)
start=sphere(pos=vector(0,0,0), radius=0.3, color=color.red)
while n<100:
  rate(25)
  temp=random()

 theta=temp*2*pi
 dr=vector(cos(theta), sin(theta),0)
 ball.pos=ball.pos+dr  

  n=n+1
ball.color=color.cyan
ball.radius=0.5
start.radius=0.5

这对距离的寻找会出问题吗?我们依旧来看距离平方关于步数的图:

看吧,这就是我们想要的结果。这就是π,就像一位隐藏在现实世界背后的日本忍者,它会突然出现在你没料到的地方。

 

家庭作业

 

你不做点关于π的家庭作业吗?

看看是否会得到一个更好的距离平方关于步数的图。尝试多一点的步数,或许没那么多噪音。
如果你创立一个方向和每一步的大小都是随机的二维的随机游走过程,看看会发生什么?我承认这有点艰苦,因为你不能用均匀随机数(均匀分布的随机函数),除非你来决定每一步的范围。你可以限定每一步的范围从0到1,然后用高斯分布去决定每一步的大小。
尝试用三维的离散随机游走去寻找π。小技巧:你可以寻找三维中距离和步数。

 

关注微信:哆嗒数学网 每天获得更多数学趣文

新浪微博:http://weibo.com/duodaa

数学大师金字塔中的人物他们都是谁?

 

原文作者:Alucinor 。

翻译作者,风无名,哆嗒数学网翻译组成员。

校对,Math001。

 

关注微信:哆嗒数学网 每天获得更多数学趣文

新浪微博:http://weibo.com/duodaa

 

 

我想我大概在这个事上花了两个月。如果只干这件事,且不停的话,一个月就可以完成了。现在,它终于完成了。
 
 
 
这幅图片中的数学家是:
 
 
高斯、牛顿、阿基米德、欧拉、柯西、庞加莱、黎曼、康托、凯莱、哈密顿、艾森斯坦因、帕斯卡、阿贝尔、希尔伯特、克莱因、莱布尼兹、笛卡尔、伽罗瓦、莫比乌斯、雅克布·伯努利、约翰·伯努利、丹尼尔·伯努利、狄利克雷、费马、毕达哥拉斯、拉普拉斯、拉格朗日、克罗内克、雅克比、波尔约与罗巴切夫斯基、诺特、热尔曼、欧几里得、勒让德。
 
 
 
这些传记信息,由于大部分都是来自于我的记忆,所以我并不是完全确信;不过,如果认出了错误,请指出来。谢谢。
 
 
还需要指出来,图片并不一定真实地代表了那些数学家在真实生活中的样子,因为我有意识地对他们的头发进行了微调,也因为并不存在关于他们的非常好的图片(或者缺乏权威的肖像)。
 
 
很不幸的是,一张图片能容纳的内容太少了,历史上值得显示的数学家远远多于此;这幅图中的多数数学家,都是我在我的数学史课上所熟悉的。
 
 
 
 
卡尔·弗里德里希·高斯 1777-1855
 
 
被认为是历史上最伟大的三个数学家之一。以仅用尺、规作出正十七边形而著称(这个壮举是从古希腊以来从没有被发现的,古希腊人知道的仅仅是最多十五边形),得到了“边数是费马素数的任一多边形都可以做出”的结论,《算数研究》这部书论著作提出了“模记号法”, 发现了代数学基本定理,计算了谷神星的轨道,还有大量电磁学、测地学的著作,发明了回光仪,以及其它太多的贡献需要提及。由于担心被拒绝,他拒绝发表他关于非欧几何的思想。被认为是彭加莱之前最后一位数学全才。
 
 
 
 
 
艾萨克·牛顿 1642-1727
 
 
 
历史上最伟大的三个数学家中的第二个。因为发现了重力,撰写物理学的各种著作,共同发明微积分(另一个发明人是莱布尼兹)而闻名于世,以及他最优秀的著作《自然哲学的原理》(手上那本书)。他独自工作。他发明他自己的望远镜,并且发现了二项定理。他不喜欢对错误言语太多,所以别人认为他脾气不好。不过,他声称他的工作就像是坐在海边捡贝壳,从来不知道海洋的底部有什么东西。
 
 
 
阿基米德 前287 - 前212
 
 
 
历史上最伟大的三个数学家中的最后一个。因为提出了杠杆的概念,发明了螺杆泵,计算了球与圆柱体的体积之比而为人知晓(手上拿着球和圆柱)。据传说,当他发下了辨别金子是否掺假的方法的时候,在大街上边跑边喊“优瑞卡!”[译者注:Eureka!意思是“我发现了”]。他在战争中被一个士兵杀死了,原因未知。也许是因为,那个士兵踩了他在地面上的工作而惹恼了他。还可能是,为了完成一个数学问题的解而拒绝被那个士兵带走。他喜欢在任何地方做数学。如果有烟灰的话,他会在上面写写画画。他甚至用皮肤上的油来写:在古希腊,欲后涂油是一个习俗。
 
 
 
莱昂纳得·欧拉 1707 - 1783
 
 
一些人称呼他为“分析的化身”。他在数论方面有大量工作,计算了级数1/n^2的和(双手之间的公式),与达朗贝尔提出了“函数”的概念,能够在头脑中进行巨量的计算。喜欢小孩子,并且有很多小孩子。慢慢地眼睛瞎了,在七十岁的时候完全失明。他的失明并没有阻碍他数学的洞察力,相反,在他彻底失明之后,“视觉”不再阻碍他的洞察力了。
 
 
 
朱尔斯·亨利·庞加莱 1854 - 1912
 
 
被认为是最后一个数学全才。因为对三体问题的猜想,相对论相关的一些概念的研究而成名——一些人说他应该获得(狭义)相对论的所有荣誉。以他的名字命名的庞家莱圆盘模型,使用一个圆盘来可视化了双曲几何
 
 
 
奥古斯丁·路易·柯西 1789 - 1857
 
 
高斯同时代的人。因为对微积分的工作(包括极限、连续性的概念),一些代数与复分析的工作而为人熟知。他旁边的公式是复分析中的柯西定理,他下面的是著名的柯西不等式。
 
 
波恩哈德·黎曼 1826 - 1866
 
 
德国数学家,他思想的原创性给高斯留下深刻的印象。因非欧几何、积分论的观念而著名。由于疾病很早就去世了。他旁边的球体是黎曼球体的一个立体投影。
 
 
 
乔治·康托 1845 - 1918
 
 
德国数学家。克罗内克一贯地批评他的方法,然而他仍然因为发展了集合论的概念而著称。他的观念被希尔伯特以及其他伟大的数学家所接受,他熬不过克罗内克的批评,他自己进了精神病院。他旁边的分形是一个康托集。
 
 
 
阿瑟·凯莱 1821 - 1895
 
 
英国数学家。与他的朋友西尔维斯特(Sylvester)建立了不变量理论,并且成功地让女学生进入剑桥。也以n维几何的概念著称。
 
 
 
威廉·罗恩·哈密顿 1905 - 1865
 
 
被认为是最伟大的爱尔兰数学家。14岁的时候,他就掌握了他这一生所使用的所有语言。发现了四维超复数和四元数代数。前者的发现是当他在第三维中不能找到一个方法来表示复数的时候。在生命的晚期,酗酒成为他的个人问题。
 
 
 
费尔迪南 ·戈特霍尔德·马克斯·艾森斯坦因
 
 
杰出的数学家、高斯的学生.他的导师认为他是他的最好的学生之一、最伟大的数学家之一。不幸的是,他很年轻地就去世了。
 
 
 
布莱士·帕斯卡 1623 - 1662
 
 
始创了概率论。他是一个法国数学家,向其他数学家提出了摆线问题,也以笛沙格(Descargues)定理的逆定理著称。他前面的三角形队列就是帕斯卡三角,也是二项展开式的项的系数。
 
 
 
尼尔斯·亨里克·阿贝尔 1802 - 1829
 
 
一个贫穷的瑞典数学家。他教数学并且在代数方面做了一些工作。在他的同代人能认识他的工作的价值之前,他年纪轻轻地就去世了。
 
 
 
大卫·希尔伯特 1862 - 1943
 
 
哥廷根天文台的台长,高斯的后继者之一。对代数做了一些贡献。支持了康托尔的集合论。试图在哥廷根给艾米·诺特谋取一个职位,不过最后失败了。试图去完全地理解一个新概念的时候,他很慢,这一点也很出名。
 
 
 
菲利克斯·克莱因 1849 - 1925
 
 
哥廷根天文台台长,高斯的另一个后继者。对于代数做了贡献,也以克莱因瓶子(图中手上)著称。
 
 
 
戈特弗里德·威廉·莱布尼茨 1646 - 1716
 
 
 与牛顿同为微积分的创立者。不过他与牛顿之间的竞争很激烈。除了数学以外,在哲学、政治学、法律、历史方面他也很擅长。
 
 
 
勒内·笛卡尔 1596 - 1650
 
 
他的名言“我思故我在”(Cogito ergo sum,他的衣领上)。他发明了笛卡尔坐标系,并且因此创立了整个几何学系统。那句话经常被错误地解释为一个人存在是因为他思考,其实它的意思是:正在思考这个行为是唯一存在的真实情况。
 
 
 
 
埃瓦里斯特·伽罗华 1811 - 1832
 
 
一个杰出的数学家,他的天才没有被很好地承认。他的审查者理解他的表述很困难,而他经常声称太简单而不需要解释。他的一生中著作很少,并且准确地预料到了将在决斗中死去。群论、伽罗华理论与代数的相关贡献让他成名。
 
 
 
 
奥古斯特·费迪南德·莫比乌斯 1790 - 1868
 
 
德国数学家。莫比乌斯带就是用他的名字命名的。莫比乌斯带只有一个面(手上拿着)。也对代数做出了贡献。
 
 
 
伯努利家族(雅克布 1654 - 1705(图片的左边)、约翰 1667 - 1748(图片的右边)、丹尼尔 1700 - 1782 图片的下面)
 
 
伯努利家族是一个杰出的家族,其中一些人是数学家。丹尼尔·伯努利是约翰·伯努利的儿子,对于应用数学做了很多贡献。他的父亲与雅克布·伯努利彼此竞争,并且经常论战。他们的一个争论关涉到:为了使一个小珠子最快速地从一个绳索的一端到另一端,绳索应该是什么形状的(正确答案是摆线)。丹尼尔·伯努利经常被排除在欧拉与达朗贝尔的争论之外。
 
 
彼得·古斯塔夫·勒热纳·狄利克雷 1805 - 1859
 
 
高斯的学生,他在数论方面的工作受到了老师的鼓舞。又一次,在一个教会庆典上,高斯想烧掉他的《算术研究》手稿献祭,眼见就要点着了,狄利克雷及时的救下了这个手稿。(我不确定这个故事的真实性,我在其他地方看到的)
 
 
 
 
皮耶·德·费马 1601 - 1665
 
 
被认为是十七世纪最伟大的数学家。在数论方面有很多工作,提出了引起很多数学家与挑战者注意的费马大定理(他声称已经证明了该定理,不过它的证据从未发现)。也创立了后来被发现不一定是素数的“费马素数“。高斯对费马大定理不感兴趣。
 
 
毕达哥拉斯 前572 - 前492
 
 
他拥有最著名的毕达哥拉斯定理(手上拿着一个标记直角的几何图形,汉语通称“勾股定理”)事实上是巴比伦定理的证明。他对数的抽象是受到赞誉的,还包括偶数、奇数的性质。他认为所有事物都是数。
 
 
 
皮埃尔-西蒙·拉普拉斯 1749 - 1827
 
 
法国数学家,对数理天文学、物理学做出很多贡献。以微积分中的拉普拉斯方程、拉普拉斯变换为著名。一些人认为他是像牛顿一样伟大的科学家,并且称呼他为法国的牛顿。
 
 
 
约瑟夫·路易斯·拉格朗日 1736 - 1813
 
 
拥有很坏的饮食习惯的数学家。他第一个提出了微积分中的中值定理,在数论方面做了一些工作。然而,他的《分析力学》被认为是他最好的工作。
 
 
 
 
奥波德·克罗内克 1823 - 1891
 
 
代数与数论领域的数学家。在其他人之前掌握了伽罗华的域理论,不过对数学家使用无理数持批判态度,并且说数学应该建立在整数间关系的基础上;他对林德曼说无理数并不存在。他也批判康托尔,并且不认同他的概念。这最终导致康托进了精神病院。
 
 
 
德卡尔·古斯塔夫·雅克布·雅克比 1804 - 1851
 
 
声誉经常被误认为其弟兄的一位数学家。因数论、代数、阿贝尔函数方面的工作而著名。
 
 
波尔约·亚诺什 1802 - 1860 与 尼古拉斯·伊万诺维奇·罗巴切夫斯基 1793 - 1856
 
他们都是最早向公众提出非欧几何的人(要记得高斯并没有向公众提出)。康德的《纯粹理性批判》广有受众,在那本书中,非欧几何被认为是荒谬的;因而他们的想法备受挑战。高斯称赞两位数学家的工作,仅有罗巴切夫斯基的观点在哥廷根获得了高斯的支持。在给波尔约的信中,高斯声称如果给予他称赞就好像给自己称赞一样。使用非欧几何作为反例,罗巴切夫斯基也挑战了欧几里得的第五公设。
 
 
 
艾米·诺特 1882 - 1935
 
 
埃尔朗根大学数千名学生中唯二女学生的数学家。她受到了希尔伯特与克莱因的影响。虽然希尔伯特试图帮她在哥廷根获得一个职位,不过没有成功。她因在非交换代数方面的原创性工作而著名。
 
 
 
 
索菲·热尔曼 1776 - 1831
 
 
她父母不鼓励她从事科学。但她还是成为了女数学家。受了高斯数论工作的影响。当她在二次互反律方面做了一些发现之时,她伪装成一个男子来给高斯写信谈论这些发现(因为她担心,如果高斯知道了她的性别将不会接受她)。然而, 当她真的揭示了她的身份,高斯对她的工作印象深刻并且更加尊重她,因为由于社会的偏见,对于女人来说在科学上获得成功更加困难。
 
 
 
欧几里得 前325 - 前265
 
 
一个希腊数学家,以《几何原本》中的几何学工作而著称。他的工作主要是平面几何;他的一些公设,包括最后的那个,并不适应于非平面的曲面。不过,他对几何的的很多观点被广泛接受了很多个世纪。
 
 
阿德利昂·玛利·埃·勒让德
 
 
数论领域的数学家。他的二次互反理论从来没有被他自己成功地证明,但是由于被更年轻的高斯证明了,他很嫉妒高斯。
 
 
 

关注微信:哆嗒数学网 每天获得更多数学趣文

新浪微博:http://weibo.com/duodaa

你感受了什么?你爱着什么?——2018数学家大会精彩回顾

2018年国际数学家大会(ICM)在国际数学联盟主席森重文深思的语调中谢幕,他的发言激起了参与者对会议中最欣赏什么和学习了什么的思考.


本届大会将作为第一届在南半球举办的国际数学家大会载入史册,这是充满了激发灵感的对话、令人着迷和开天辟地的数学思想的两个星期.

 


来自114个国家的3018位数学家出席了这场全球数学大聚会,共计10506名与会者和416000次网上浏览. 大会的九天期间,社交网络汇集了236万人的关注.

 

以下是本次大会的一些高光时刻(温馨提示,视频更精彩):

 

悼念“闪耀之光”米尔扎哈尼 

 


7月31日,安静而有序的人流走向报告厅参加(WM)²,史上第一届世界数学女性会议(World Meeting for Women in Mathematics,ICM2018晚上的卫星会议),见证了人们对第一位也是目前唯一一位女性菲尔兹奖得主(2014首尔ICM获得)的哀悼. 最近亡故的伊朗数学家米尔扎哈尼(Maryam Mirzakhani)为了诸如照明难题的数学方程倾其一生. 她在抽象数学方面杰出的贡献,解决了一个有关光线、台球、风和其他物体的反射与传播相关的悬而未决物理问题. 人们预言她的结论会在科学、体育和其他领域获得许多应用.


“2018菲尔兹奖得主面对面”和“为什么菲奖被誉为‘数学界诺贝尔奖’”

 


贝卡尔(Caucher Birkar), 费加里(Alessio Figalli),舒尔茨(Peter Scholze)和文卡特什(Akshay Venkatesh)因他们在学术领域的不同贡献,把数学界最有声望的奖项带回了家. 我们与历史学家巴拉尼(Michael J. Barany)对话,关于这惹眼的奖项,他告诉了我们一些它的历史,并消除了我们对它的一些讹传.

 

达斯卡拉基斯讲述深度学习与机器学习

 

纵贯本次数学家大会,脸书直播会采访一些具有独特个性的数学家。 “计算的诗人”、奈望林纳奖得主达斯卡拉基斯(Constantinos Daskalakis)讲述深度学习和机器学习. 


贝卡尔: ”没有梦想的数学人不是数学家.“

 

 

贝卡尔以他独具创造性的数学方法和代数几何为人所知. 陈荣凯教授称他与他同事最近的工作是“双有理几何的巨大突破”. 陈荣凯叙说着贝卡尔蹒跚学步时在被战争撕裂的库尔德的生活经历,以及之后在英国寻找难民庇护的事. 陈荣凯说:“他的经历,尤其是对于那些在艰苦之地、处于困境的年轻人来说,是启发性的.”


254度灰 —— 多贝茜的美丽的逻辑财富

 

 

对于自己的工作在纯数学之外被应用,多贝茜(Ingrid Daubechies)显得很高兴. 她的突破性工作被应用于JPEG2000标准(一种电子图片的储存格式)的开发. 她独特的数学公式使得数据可以更有效地压缩和存储. 得益于她的研究,人们可以轻松地储存和发送自拍和旅拍照片了.

 

维拉尼举办“地球的年龄”公开讲座

 

 

在标志性的蓝色西服和绿色大领花的装束下,2010年菲尔兹奖得主维拉尼(Cédric Villani)举办了一场公开讲座,阐释了科学家们如何确定地球的真实年龄.

高斯奖得主多诺霍:乐见我们的数学改变着世界!

 

原文来自2018年国际数学家大会官网

翻译作者,whymath,哆嗒数学网翻译组成员。

校对,Math001。

 

关注微信:哆嗒数学网 每天获得更多数学趣文

新浪微博:http://weibo.com/duodaa

 

斯坦福大学的大卫·多诺霍(David Donoho)教授被授予2018年度高斯奖,以表彰其在数学领域之外获得了重要应用的杰出数学贡献。该消息由国际数学联盟(IMU)主席森重文在2018年8月1日国际数学家大会(ICM) 开幕式的上午宣布。

 

 

 当日上午,里约热内卢里约会议中心内的国际数学家大会现场,官方称赞大卫·多诺霍“对数学做出的奠基性贡献”。

 

 颁奖结果宣布后,多诺霍教授谈起了他的早年研究理论被应用到生活中时所他所体验到的乐趣。“几十年前我做了些事,当我看见它们的的确确发生在我们身边时,我感到无比的自豪。我们在改变世界这件事上拥有一种力量,这种力量让我对我所选择的事业十分满足”。

 

 他说,所谓的数学事业并不仅限于纯数学或发表论文。“数学和世界的其它部分有极多的联系,随着时间过去,我们看到越来越多的这种联系。现代世界就是建立在数学之上的”。他随即举了智能手机的例子,其交织了大量的诸如素数分解的数学基础知识。

 

 多诺霍教授于1957年出生在美国加利福尼亚州,他将自己的职业生涯奉献给了统计学,信息理论和应用数学的研究,并为理论和计算统计学以及信号处理和谐波分析做出了奠基性贡献。他的一些算法为理解最大熵原理,鲁棒过程的结构和稀疏数据描述做出了重要贡献。

 

大卫·多诺霍现任教于斯坦福大学,此前则执教于伯克利大学。他拥有普林斯顿大学的优等学位和哈佛大学的统计学博士学位。他曾在多个行业工作,包括石油勘探,信息技术和计量金融。 他曾获得麦克阿瑟奖学金(1991年),考普斯总统奖(1994年),维纳奖(2010年)和邵逸夫数学奖(2013年)。

 

高斯奖(Gauss Prize),是由国际数学联盟和德国数学协会联合颁发的纪念德国数学家卡尔·弗里德里希·高斯(1777-1855)的奖项,从2006年开始,在每一届国际数学家大会上颁布奖项。高斯教授在数论,统计学,数学分析,微分几何,地球物理学,天文学和光学学领域都做出了重大贡献。

 

关注微信:哆嗒数学网 每天获得更多数学趣文

新浪微博:http://weibo.com/duodaa

巴西:我们拥有世界上最大规模的奥数竞赛!

 

原文来自2018年国际数学家大会官网

翻译作者,radium,哆嗒数学网翻译组成员。

校对,Math001。

 

关注微信:哆嗒数学网 每天获得更多数学趣文

新浪微博:http://weibo.com/duodaa

 

在里约热内卢举办的2018年度国际数学家大会(ICM)的这个特殊仪式上,数百名朝气蓬勃的巴西中小学生收到了巴西奥数比赛的金牌---而18岁的卢卡·艾斯柯贝利就是其中的一员。卢卡来自南部里奥格兰德州立大学,他因杰出的数学能力,在富有革新精神的巴西公校奥林匹克数学竞赛(OBMEP,Brazilian Maths Olympiad for Public Schools——编者注,虽然名称是公校,其实私校现在亦可参赛了)中获得了六次金牌。而 OBMEP是世界上规模最大的中小学数学竞赛,会有超过8%巴西人口的学生参加此项竞赛考试,以测试数学水平。

 

 

去年,超过1800万青少年参加了初赛(超过智利人口!),这项竞赛由巴西基础数学和应用数学研究所(IMPA)和巴西数学会主办,覆盖了巴西全国99.6%的城市。

 

OBMEP协调员兼IMPA副主任克劳迪奥·拉得利姆解释说,每年都有6,500名奖牌获得者受邀请学习当地大学的课程,并从CNPq(Brazilian National Council for Scientific and Technological Development巴西国家科学技术发展委员会)获得每月100雷亚尔(约185人民币)的科学启动奖学金(PIC)。 “由大学的教授授课,教授他们在原本所在学校不能学到的学科以及讲解原本所在学校不能遇到的题目。 与此同时,我们试图激励他们继续在大学深造,“他说。

 

卢卡学习PIC的课程已经有好几年了,他说这些学习有助于他在目前就读的私立学校获得奖学金,并且希望在ITA航空学院学习计算机工程。 他感慨道,“因为学校里经常会有很多学生对数学不感兴趣,老师们不得不花很多时间督促他们。”PIC帮助他与一群志同道合的学生在一个课堂上,因此课程“感觉更好”(flow better——说唱音乐术语,喜欢rap的自然懂在说什么),他说。

 

PIC教学方法与传统的中小学课程不同,来自圣埃斯皮里图州的法比奥拉·洛特里奥(18岁)解释说,今年她和她的三胞胎姐妹一起获得了她的第三枚金牌。这三人现在在圣埃斯皮里图州联邦大学一起学习数学。 在她早期的PIC时代,法比奥拉发现很难适应不同的数学学习方式,“但是一旦习惯了它,我开始越来越喜欢数学。 之前在学校,总是专注于公式,而忽略了概念的理解。

巴西公校奥林匹克数学竞赛(OBMEP)于2005年开始举办,旨在发掘具有在数学上有一定能力的学生,目的是帮助这些青少年(从小学六年级到高中一年级) 激发他们在数学方面的潜力,重点是逻辑运用能力和创造能力,而不是传统的公式记忆。

自2005年开始举办以来,OBMEP已经对巴西所有公立中小学校的学生进行了测试,去年对私立中小学校也进行了测试。 今年13%的金牌奖给了私立教育机构的青少年。 (编者注:巴西人阿维拉(Avila)在2014年获得了数学最高荣誉菲尔兹奖)

 

关注微信:哆嗒数学网 每天获得更多数学趣文

新浪微博:http://weibo.com/duodaa

2018年计算机科学最高荣誉奈望林纳奖得主:灵感来自传统文化

 

原文来自2018年国际数学家大会官网

翻译作者,萧瑟向来,哆嗒数学网翻译组成员。

校对,Math001。

 

关注微信:哆嗒数学网 每天获得更多数学趣文

新浪微博:http://weibo.com/duodaa

 

康斯坦蒂诺斯·达斯卡拉基斯,现年37岁,是麻省理工学院的教授,也是2018年度奈望林纳奖的获得者。他在2018年于里约热内卢举办的国际数学家大会开幕式上被授予该奖项。

 

 

 达斯卡拉基斯当前的工作专注于博弈论和机制设计。他研究出了用以理解人类博弈中策略性行为的算法和数学工具。

 

 数学家康斯坦丁诺斯·达斯卡拉基斯的工作是他对希腊传统的终身致敬。

 

 “希腊文学学(编者注:philology,文学学,不是文学)核心是人,” 达斯卡拉基斯说: “我的研究使用数学计算来研究人。 所以它的灵感来自于希腊观照人的传统。”

 

 奈望林纳奖于1981年创办,用芬兰数学家罗尔夫·奈望林纳(1895-1980)的名字命名,他著有两部书,50篇文章,将数学概念介绍给非数学工作者。该奖项是理论计算机科学界最高荣誉之一。

 

 “我喜欢质疑而不是把事情看作理所当然,” 达斯卡拉基斯在视频资料中说: “有时提出正确的问题已经向做出发现前进了一半。”

 

 

 达斯卡拉基斯于1981年生于希腊雅典,以解决“纳什均衡”闻名。纳什均衡是全世界数学家已经花费六十多年试图解决的一个方程。在他关于纳什定理的博士论文中,达斯卡拉基斯追踪了阻碍纳什均衡适用性的计算障碍,并证明了需要新的,更现实的平衡概念。

 

 “博弈论设定于已存在的、由其他人设计的复杂战略环境,而机制设计则考虑反方向的问题,即如何设计系统,以便人们彼此进行战略性交互。”

 

 在其业余时间,达斯卡拉基斯探索希腊民俗文化。

 

 “对希腊文化的了解越多,我的改变就越多,对希腊民族认同感就越多,”达斯卡拉基斯说。

 

有资格获得奈望林纳奖的数学家必须在获奖当年的1月1日不满40岁。

 

奈望林纳奖委员会由陳繁昌(Tony F. Chan, 中国)主持,由马尼德拉·阿格雷瓦尔(Manindra Agrawal , 印度),埃马纽埃尔·坎兹(Emmanuel Candès, 美国),沙菲·戈德瓦塞尔(Shafi Goldwasser, 以色列),尼克·欣汉姆(Nick Hingham, 英国)和乔恩·克莱因伯格( Jon Kleinberg, 美国)组成。

 

关注微信:哆嗒数学网 每天获得更多数学趣文

新浪微博:http://weibo.com/duodaa

2018年陈省身奖得主柏原正树

 

原文来自2018年国际数学家大会官网

翻译作者,Aria,哆嗒数学网翻译组成员。

校对,Math001。

 

关注微信:哆嗒数学网 每天获得更多数学趣文

新浪微博:http://weibo.com/duodaa

 

 

京都大学的名誉教授柏原正树(Masaki Kashiwara)在2018国际数学家大会(ICM)上获得了陈省身奖. 大会开幕式早晨,国际数学联盟(IMU)主席森重文(Shigefumi Mori)颁布了这一奖项,森重文称赞了他"将近五十年工作生涯在代数分析和表示论做出的杰出和重要的工作".
 


柏原正树在其广泛的工作中解决了许多复杂的问题,例如Kazhdan-Lusztig猜想和量子群的晶体基理论. 在此之前他杰出的工作获得了弥永奖(1981),  朝日奖(1988),日本学士院奖(1988), 和京都数学奖(2018).
 


出生于1947年日本结城,柏原正树在东京大学完成了数学学士和硕士学位,并于1974年在代数分析创始人佐藤幹夫(Mikio Sato)的指导下在东京大学完成博士学位.
 

这位日本数学家从1984年起成为了京都大学数理所(RIMS)的高级研究员,1973成为RIMS副教授(1971年始为助理研究员). 1984年他也在名古屋大学获得副教授职位.
 


2010年,国际数学家大会(ICM)开始颁发陈省身奖,用于嘉奖在数学领域取得卓越成就的学者. 该奖项创立于2009年,由国际数学家联盟(IMU)和陈省身奖基金(纪念中国数学家陈省身,他毕生致力于数学研究和数学教育)合作创建. 除了24K金质奖章外,获奖者获得的50万美金将对半分给获奖者本人和他指名的机构,用于支持数学研究、教育和相关项目.
 


2018年陈省身奖的归属由如下成员组成的组委会裁定:主席Caroline Series (英国), Jordan Ellenberg (美国), Gerhard Huisken (德国), Michio Jimbo (日本), 和Benoit Perthame (法国).

 

关注微信:哆嗒数学网 每天获得更多数学趣文

新浪微博:http://weibo.com/duodaa

八卦新晋菲尔兹:难民、分居、怕小孩、得奖像玩

哆嗒数学网成员 ALIMJAN、小米、小饕、radium 各自翻译了本文的一部分

 

关注微信:哆嗒数学网 每天获得更多数学趣文

新浪微博:http://weibo.com/duodaa

 

 

 

贝卡尔:我飞了起来!

 

 

菲尔兹奖得主高雪·贝卡尔(Caucher Birkar)具有库尔德和英国的双重公民身份,而且还具有难民状态。“我非常高兴,同时非常兴奋。获得这个奖意味着我能继续数学研究和从事我钟爱的事业。”在2018年国际数学大会开幕式上获得菲尔兹这一权威奖项的贝尔卡满带笑容的说道。


1978年,贝尔卡出生在两伊之交库尔德地区的马里万省。现在他已经是剑桥大学的研究员了。几百年前,在这同样一片土地上,生活着伟大的数学先贤——比如,莪默·伽亚谟(1048——1131)、艾德丁·图西(1048——1131)。现在贝尔卡也追随他们来到了数学世界。“当一名库尔德人是艰辛的,”贝卡尔说到,“我们库尔德人有句俗话:‘除了大山,库尔德人没有朋友。’我希望我获奖的消息能带给4000万库尔德人哪怕一丝丝笑容。”贝卡尔生长在伊朗农村,他的哥哥在那时教了他数学。“我的父母都是农民,我应该是不可能在数学上有什么成绩的。”贝尔卡在官方的获奖视频中感谢了库尔德的传统文化,他说靠它才活了下来。

从德黑兰大学毕业后,他一直致力于解决现代数学中如极小模型,法诺簇和奇点问题等关键问题。过去8年里,贝卡尔已经为该领域做出了杰出贡献,并且已经获得了巴黎基础科学数学奖和美国数学协会摩尔奖。


对于这位年轻的数学家来说,他的职业有两个阶段。第一步是学习前人已经积累的知识。 “阅读优美的数学世界就像漫游在一个美丽的古镇。当你四处遨游时,你会发现那些华丽的建筑。第二阶段,就像突然间我有一双翅膀,我飞了起来,在城市上空鸟瞰我在地上看不到的景色。“

 

费加里:家庭生活还没有“最优”的最优传输专家

 


阿雷西奥·费加里(Alessio Figalli,)1984年出生于意大利的那不勒斯。他在最优传输理论中的贡献帮助他夺得了数学界的最高荣誉并名留数学史。


关于数学,他最喜爱的事情之一就是能够在世界上任何地方开展工作,但他的家庭生活却不像他的研究方向,远远没有达到“最优”。令人沮丧的是,他和老婆十天才能见一次面;不过他希望能很快解决这个问题。“在我的数学生涯中我已经解决了一些困难的问题,我也知道自己今后三四十年的研究方向。只有一个问题我真心希望能马上解决,那就是我能和我的老婆生活在同一个城市。”


阿雷西奥·费加里现在是苏黎士联邦理工的教授。他的工作建立了等周问题与最优传输问题之间的联系:前者在罗马神话中已有踪迹,而后者则探究运输给定质量的最优解。“他显然已经是当今全球数学界一股推动力,”路易斯·卡法莱利在一次介绍费加里工作的讲座上说道,“他的解决问题方法灵活、动态而有成效。他一定会成为这个时代最有影响力的数学家之一。”


当他还是孩子的时候,他从未意识到——或从未被告知——他对数学的兴趣将会成为一个职业。在发现了这种可能性之后,他便义无反顾地投入了这个领域并在其中展露锋芒。

 

文卡特什:曾经被视为神童

 

 

亚克西·文卡特什(Akshay Venkatesh),2018年菲尔兹奖得主,13岁时便开始了本科阶段的学习,并在20岁之前完成了普林斯顿大学的博士学位。“7岁左右的时候我有了这个螺旋图案的笔记本,然后开始写下这些二进制数。”他回忆道。

 

成为两个孩子的父亲改变了他的职业生涯和家庭生活。“在数学中,我们倾向于追求过分的完美。我觉得其实被别人强迫停止去干某件事情挺好的。孩子们就很擅长阻止你尝试去干其他事情。”他开玩笑说。


这位斯坦福教授目前在声望很高的普林斯顿高等研究院工作。这个研究院自从成立以来便“承包”着菲尔兹奖,超过半数的菲尔兹奖得主都曾在某段时间于这个研究院工作过。

 

作为一个在印度新德里出生,在澳大利亚长大的美国居民,文卡特什因其在数论方面的杰出贡献今天把这个数学界最有威望的奖项带回了家。他利用动力学中的想法来解决数论问题——一个上世纪70年代末密码学出现之前没有任何应用的抽象问题。

 

压力大的时候,文卡特什通过跑步来清理头脑和放松。如果跑的过程中还是可以思考的话,他解释道,那么他会跑得更快一些。“在你做数学的很多时候,你会卡壳。但你会觉得能够尝试去解决问题是一件很荣幸的事。你会进入一种超然的状态然后感觉自己成为了某些很有意义的东西的一份子。”他思考着说。

 

他的贡献在数学研究的好几个领域中都是奠基性的,他在研究中使用的探究式的富有创造性的方法也备受称赞。“多亏了他明智地创新地使用现代数学工具来研究数论,”彼得·撒纳克(Peter Sarnak)在文卡特什颁奖大会上说,“他在影响着从自守形式到表示论的很多领域。”


舒尔茨:数学中还有无穷多个问题等着我

 

 

年仅30岁的菲尔兹奖得主,彼得·舒尔茨(Peter Scholze),已经被科学界认为是世界上最有影响力的数学家之一。 然而,他是一个非常脚踏实地的人。


我经常对我想要理解的东西有一个模糊的概念,但又不知道如何用精确的语言描述它,”他说。 “直到我读了另一篇论文,突然间,我想我就可以表达了。


长长的头发以及超强看清模式之间联系的能力,他被称为“数学界中的莫扎特”。一些同时代的人不得不承认,舒尔茨的存在令他们敬畏。他是今年获得奖牌的热门人选,他获得该奖对于在该领域工作的人来说并不意外。


24岁时,他在仅5个学期完成本科课程和硕士学位后,成为德国波恩大学的正教授。

2010年,他将数论中的一个定理(哈里斯和泰勒合著的数学证明《The Geometry and Cohomology of Some Simple Shimura Varieties》)的证明从288页简化为37页,宣告了一个时代巨人的出现。

他在波恩的博导问迈克尔·拉波波特评论说,“非常荣幸能够将他从大学生时代带到最杰出的数学家之一。 他引起了算术几何学的革命,“拉波波特补充道。 “舒尔茨的作品令人瞩目的是他的创意的终极简洁性。 他定理的简洁具有深深的吸引力以及经典的荣耀。


舒尔茨获得顶级数学奖就跟玩一样: 欧洲数学学会奖(EMS),2016莱布尼兹奖(Leibniz),2015费马奖(Fermat),2015奥斯特洛斯基奖(Ostrowski),美国数学会Cole奖,2014克雷研究奖(Clay Research),2013拉马努金奖(SASTRA),Prix奖和Cours Peccot奖的前任获奖者。 现在,他用菲尔兹奖章将樱桃放在蛋糕上作为点缀。


他的工作重点是建立算术和几何之间的桥梁。 尽管已经取得如此大的成就,但他的潜力依然深不可测,而舒尔茨根本没有放缓的迹象。 “一旦你解决了一个问题,就会有10个问题随之而来,”他解释道。

 

关注微信:哆嗒数学网 每天获得更多数学趣文

新浪微博:http://weibo.com/duodaa

2018数学最高奖菲尔兹奖公布!

 

关注微信:哆嗒数学网 每天获得更多数学趣文

新浪微博:http://weibo.com/duodaa

 

根据2018国际数学家大会(ICM)官方网站消息。2018年被视为国际数学最高奖项的菲尔兹数学奖已经揭晓他们是:

 

就职于剑桥大学的伊朗裔英国数学家 高雪·贝卡尔(Caucher Birkar)

 

For his proof of the boundedness of the Fano varieties and for contributions to the minimal model program.

 

 

表彰其证明法诺簇的有界性并对极小模型程序的贡献;

 

 

 

 


就职于苏黎世联邦理工学院的意大利数学家阿雷西奥·费加里(Alessio Figali)

 

表彰其最优传输理论及其在偏微分方程、度量几何和概率论方面的应用;

 

for his contributions to the theory of optimal transport and its applications in partial differential equations, metric geometry,and probability.

 

 

 

就职于波恩大学的德国数学家彼得·舒尔茨(Peter Scholze)

 

表彰其将p进制域上的算术代数几何转换成对拟状完备空间(perpectoid space)并将其应用在伽罗瓦表示论上,以及对上同调理论的发展做出的贡献;

 

For transforming arithmetic algebraic geometry over p-adic fields through his introduction of perpectoid spaceS, with application to Galoids representations and for the development of new chomology theories.

 

 

 


就职于普林斯顿大学印度裔澳大利亚数学家亚克西·文卡特什(Akshay Venkatesh)

 

表彰其综合解析数论,齐次动力系统,拓扑学和表示论的贡献;

For his synthesis of analytic number theory,homogeneous dynamics, topology,and representation theory 

 

 

 感谢 小饕、萧瑟向来、ALIMJAN、math001 第一时间的翻译 

 

关注微信:哆嗒数学网 每天获得更多数学趣文

新浪微博:http://weibo.com/duodaa