2019年4月

我的爱豆是数学家小平邦彦

 

作者,候尚庶博士, 哆嗒数学网群友 

 

 

关注 哆嗒数学网 每天获得更多数学趣文

 

哆嗒小编按:此文作者是小平邦彦的超级大粉丝。长期在各个渠道逢人就推荐小平邦彦的数学著作。终于,他们的事情被出版小平邦彦中文版著作的图灵新知知道,并且授予了他图灵优秀读者的荣誉,算是对他的鼓励吧。

这篇文章有非常明显爱豆情节,请读者理解。另外,文章中提到的阅读细节,对需要买这本书的人可能会有帮助。

 

 

2008年年末的时候,我在长沙定王台的湖南图书城瞎转悠,看见两个小同学在数学专柜那里,我路过一看,她们在拿着一本不太厚的书在翻阅,书名是《微积分入门I》,作者是一个从未听说过的数学家,叫小平邦彦。等她们走后,我拿起书翻了翻,封底上写着这位数学家卓越的事迹,于是我怀着不屑一顾的心情,最终还是自己买了一本,因为我当时根本不相信,一本号称入门的微积分教材,这个老头写出来的能换出啥子花样。

 

很快,我为我自己的无知尝到了苦头。第一章的第一节,类似于讲故事,当时我根本没有品读出多少有用的知识出来,然后到了第8面的定理1.1,证明两个实数,α与β,这两个实数的大小关系,大于,小于,等于有且只有一种是成立的,我一看,这不废话吗?这有啥子好说的?而且,他的那种证法,和要证的命题,看似毫无瓜葛。这老头在搞啥?但是好在当时我闲来无事,又有一股子倔驴脾气,我和这个题目杠上了,拿在手里慢慢想,慢慢琢磨。最终,我通过对他的那个证法展开的结果,发现他在书中想告诉我的是,如果大于小于等于三个都不成立,这是不可能的。那么,这和要证明只有一个成立,又有什么关系呢?无奈中,我有一次无意中掰着手指头玩,突然间脑袋灵光一闪,找到了解决问题的钥匙:大于小于等于,类似于食指,中指,无名指,成立我们可以视为伸直,不成立我们视为弯曲,那么我们假设伸直与弯曲之间没有中间状态,三个手指头,就可以演示出四种情况:三个手指头都弯曲,伸直一个,伸直两个,伸直三个。这四种状态有且只有一种是成立的,没有两种同时成立的情况,也不可能都不成立,更无另外第五种情况,书中论证了三个手指头都弯曲的情况,那么以此为指针,根据前一面的实数的定义,和上文中,实数大小的定义,剩下的两种同事成立,三种同时成立的情况,很容易证伪,最终留下一种可行的情况,那就是有且只有一种情况是成立的。

 

当我想明白这一步的时候,突如醍醐灌顶,原来这本书的布局如此精妙。后来慢慢的往前读,我才发现,这个书很多地方写得很简略,但是该给的指针都给出了。作者督促读者在学习中要反复阅读课文,反复思考道理,而此书布局最令人惊叹的地方,就是一个简单直接的道理:你不把前面的书看明白,不把道理想明白,我让你后面的根本根本看不懂!所以,小平邦彦大师写的不仅仅是一本数学书,他同时把数学的教学法,学生该掌握的学习法都包容在这本书里,真正以知识和正确的学习方法去浇灌读者,而不是停留在教会做题之上,这对于现在这个浮躁的数学学习范围,以应试为目的的数学学习动力,无异于一股能沉降浑浊的清流,而且最重要的是,不从知识和方法的根本上去学习数学,只看习题和分数,那是无源之水无本之木,不可能走得很远的。小平邦彦大师的书中,文字清晰而精炼,很多东西写一半留一半,初看上去冰冷而晦涩,有点严肃,但是深入进去才知道,里面浸透着作者满满的温情与期盼,在严格的思考训练的过程中,我们可以感受到作者那种特有的,以睿智为途径表达给读者们的慈爱。

 

 

曾经,有言论拿辛钦的《数学分析八讲》与小平邦彦的《微积分入门》打比,辛钦的行文中,对数学知识的讲述极尽详实,对初学者很友好,确矣。这就好比,我们要过一条河,辛钦先对地质水文气象做了大量的功课,盐后在河上建立起了一座相当坚固的大桥,再把所有的资料都交给读者。这条河哪里水深多少,哪里流速多少,最近这些年的水文情况如何,哪里有旋涡,甚至哪里有落水鬼,都写得清清楚楚,他根据这些数据,建起了一座大桥,这座桥限速多少,承重多少,哪里风速多少,也都告知得清清楚楚,剩下的只要你走过去了。但是小平邦彦的书,风格则完全不同,他只给出你几样最简单的工具,还有一个资料库,你若是想建桥,可以,里面有图纸;你若是想造船,也可以,里面也有图纸。并且,最重要的是,他会在资料库中留给你一个保命的救生圈,找到这个救生圈,就至少不会溺死。剩下的,就靠你自己去摸索实践了。

 

 

 

在实践中学到的知识,那是很有收获感的,并且,你会发现,他给你的那几样最基本的工具,那简直太好用了。所以,我个人认为,如果有一处风景区,电视台花大价钱拍了一部记录片,详细的记录了里面的风景和特色,播放出来之后,给人们的收获,其实是不如自己拿着一块罗盘,一张地图去实地勘测一遍来得充实的。而小平邦彦交给我们的,就是这块罗盘和这张地图。文字上的精炼,与思想上的深厚与丰富,这样看似矛盾的特性在小平邦彦的书中并行不悖的体现出来,其实并不矛盾。因为精炼的是他的写法,深厚的是他的学识,深远的是他的眼光,充实的是读者的头脑,升华的是读者的灵魂,提升的是读者的数学素养。

 

 

也有人用菲赫金哥尔茨的《微积分教程》,还有柯朗的《微积分和数学分析引论》与小平邦彦的书相比,前两部书,有很大的相似性,都是由大家所写,而且都很注重数学在物理中的应用,菲赫金哥尔茨是实分析列宁格勒学派的创始人,而柯朗本身就是一位数学物理大家。小平邦彦的书中,偏向于纯理论,没有一句话讲的是实际应用。作为站在人类智慧与文明的顶峰的那群人中的一个,小平邦彦应该深知,知识学明白了,能产生多大的战斗力,他已经无意教我们如何去运用知识了,他想教会我们的,应该是如何获取知识,知识都能自己获取了,应用这些知识的范围,应该是天高海阔的。从我搜集到的信息来看,1935年小平邦彦到东京大学学习数学,38年开始又在东京大学学习了三年的物理,那他真不懂物理吗?未必!

 

日本向来有大师级的数学家来写中小学教材的传统,小平邦彦自然也在其中。教材,就是要绝大多数学生都能看懂,而且能学到知识的课堂用书,所以,教材的口径应该是最宽的,是可以让最多的人受益的,这就需要一个自己经历过从“不懂”,到“懂”的明白人来写。从小平邦彦的故事从得知,这位可敬的数学家在中学的时候,学习范德瓦尔登的《代数学》,学不明白,就只能抄书,后来在日本战败时的一片焦土中出道,他青少年时受过的苦,还有对数学的努力执著,足以让人感到心酸。他把他对数学精深的理解,写成了能让大多数人学懂的知识,凝铸在了他的著作之中。

 

前一段时间,我和一位武汉大学学金融,却爱好数学的小兄弟聊天,他在微信中说到,小平邦彦的这本书里面,宝藏不计其数,他不敢想象里面还有多少好东西,很多别的书要用大学,甚至靠近研究生的知识才能论证的知识,这本书用高一高二的知识就能解决,而且严谨而流畅,这本书的口径宽度和思想深度惊人。

 

比如,隐函数,隐映射,证明好直接。史济怀曾说,隐函数隐映射是初学微积分最难的,有些是用多复变知识给重新证一遍,史济怀对科大的学生说:你们读的懂就读,读不懂不做要求。但是这本书里的证明如此直接而正式而简明,借助多元积分闭区域的知识,这是人能想到的?多元泰勒还能这样用,隐函数定理就像是熟透了自动掉下来的,把严格的理论,用这样简明而严谨的方法表达,我就算读遍所有的书,都想不到这样来处理。多元偏导存在且二阶偏导连续推出交换次序二阶偏导相等再推出Young定理,再往下加上限制 推出Schwarz定理,一以贯之。

 

能够在一本高一学生就能看懂的书中,贯穿微积分,实分析,泛函分析,如此深刻的思想,地球上恐怕只有小平邦彦能做到。

 

这本书我也曾多次拿给初中毕业的学生,作为初升高的辅助教材来讲解,对于书中那些相当精彩的处理方法,有一个学生一脸崇敬的问我,老师,小平邦彦他自己是怎么想到的啊?这个问题其实我根本无法回答,我只能调出小平邦彦自己曾经说过的一段话:“对我来说,没有比数学书更难念的了。数百页的书从头到尾念完至难。因为知道‘数学’读懂了,也就成为最简单不过的事而已。所以只念定理,努力想了解它。证明就自己想。而在一般情形之下是想不透的,只好看书上的证明。但是读一两次也不觉得懂,便把证明写在笔记上看看。这回注意到证明有不中意的地方,就想有没有别的证明法?这样子好不容易读完一章时前面的部份已经忘了。没法子,又从头复习。这回倒在意起整本书章节的排列方式来。”我只能告诉我的学生,他是通过努力思考而获得的,但是,事实真的是如此吗?

 

我时常无端的猜想,小平邦彦应该来自于天顶星某个具有高度智慧的种群,甚至是超越我们这个宇宙时空之外的智慧种群,遥望到了我们这个世界学不好数学的人有多愚钝,于是来到我们这个世界,将他所知道的教给我们。为了让愚钝的世人能理解他的知识,他在前期不得不封印了他的知识与智慧,把自己变得愚钝,然后理解世人的愚钝之后,再把他的知识以愚钝的世人能理解的形式表述出来。

 

于是,我在上一篇文章中写到,“······所以,你不要认为你基础不好,也不要认为你数学思维能力不强,因为我们世人(一般的普通人)的数学基础和能力的差别,在以数学之神的形式而存在的小平邦彦大师的眼里,那就像我们看一只蚂蚁的体长是6.3毫米还是6.25毫米的差别一样,这个差别其实并无实质上的意义,而小平邦彦大师由此就为我们提供了一个适应口径最宽的学习数学的方法,那就是他在晚年,把他毕生所学倾注在一本高中生就可以看懂的解析教材上,我们只要按照正确的方法努力去读,就能读懂,而读懂之后,就会知道怎么去应用,别人能够想到的,你也能想到,甚至很多别人想不到的,你都能想到。”

 

 

从这个角度上来说,他与基督耶稣一样伟大,与特蕾莎奶奶同等圣洁。只不过,小平邦彦生性木讷,低调,谦虚,极不喜欢出风头,他太伟大了,伟大到根本不愿意去宣传自己,或者应该说是不屑。他一生都在默默的为了数学知识和数学教学而燃烧自己,就这样一位伟大的数学家,世人,尤其是数学圈外人知道他的却是真不多。直到1997年,这位可敬的数学家离世时,依然保持着低调的风格。他的葬礼没有宗教仪式, 灵柩上放着日本天皇送的花, 旁边环绕着花簇。 在他最喜爱的肖邦的乐曲中参加葬礼的数百人各自献上了一朵白色康乃馨给逝者。他完成了自己的使命,回归到天顶星去了,但是,他留下的精神财富,依然闪耀在人间,照亮着人类文明发展的道路。

 

在人类文明史中,有许多卓越的数学家,如牛顿,莱布尼茨,欧拉,高斯,庞加莱,柯尔莫哥洛夫······但是,他们大多高高在上,他们的理论对一般人来说,同样也是高高在上,揉一揉已经仰望得发酸的脖子和已经被光芒晃得发花的眼睛,我们同样也需要一位能直接来到我们身边的数学家,把他的知识以我们能够看懂的形式教会我们。童话中,在彩虹的尽头,有一座精巧的城堡,城堡里面住着一位善良而睿智的老魔法师,当人们历尽千辛万苦找到他的时候,就会慷慨的拿出他配制的魔药给来访者,吃了这种魔药的人,就能获得智慧。

 

但是我总觉得,这位慈祥的老魔法师长着和小平邦彦一样的面容,却又有着邻居家老爷爷的和蔼可亲,他不忍心人们把精力耗费在找到他的路上,他来到人间,把他的智慧魔药的做法详尽的写出来给大家看,具体的配方和工艺就在小平邦彦的书中。

 

种种伟大的贡献,小平邦彦已经做到了,而我只是想说到,告诉别人有这样的一本书。于是,我辛辛苦苦,呕心沥血的推广小平邦彦的《微积分入门》,从2009年年初到2019年年初,已经整整十年了,这十年中,很多人听了我的言论之后观望,这些言论也被人当成我别有用心而刻意忽略,也遇到过浅尝辄止的人,听了我的推荐之后,试着读了读,但是放弃了深入钻研的机会。这些我都不顾,终于,在上文中提到的那个武大的小兄弟不堪我的蛊惑,认真的去研读了这本书,在惊叹中给出了对这本书极高的评价,而且人民邮电出版社图灵公司也再版了这本书的修订版。编辑武晓宇多次和我交流,不耻下问,征求我的意见;市场部的李洁女士向领导申请,为我颁发了图灵公司第一例“优秀读者”的荣誉证书,在此,我深表感谢,也诚惶诚恐,因为我自认为还是德不配位的。但是我会继续把这本书品读下去,也会继续把这本书推广下去。

 

 

越战时期,代数几何教皇格罗腾迪克在越南的森林里为越南的数学工作者开讲座,这不是作秀;日本二战战败后,被遣返的侨民即使是在码头等待轮船时,依然架起黑板为孩子们上课,这也不是作秀。

 

 

开篇时提到的,长沙定王台湖南图书城,在十几年前,二楼几百平方米的卖场里面,有三分之一是高等教育的教材,目测足有上百个书柜。到现在,只在三楼的一个犄角旮旯里卖高等教育的教材了,就一个书柜,里面教材不足百本,还有些无关痛痒的科普读物;岳麓山下大学城里的新华书店,曾经有四层楼的卖场,后来变成一层楼,楼上变了旅店和网吧,再后来左边两个门面租给了考研机构做办公室,卖场只有剩下的三个门面,最近听说为了修地铁,那栋房子都拆了。八九十年代,中小学的教室墙壁上时常贴着一些很有意义也很有艺术性的宣传画,我记得有一张是在晴朗的月夜下,学生捧着书,拿着笔,在凝望着夜空思考,背景是火箭直上九霄,卫星遨游天宇,显微镜在探求细微的物质结构;还有一张是一位头发花白,带着厚厚的眼镜的老科学家,在耐心的指导拿着仪器做实验的学生。那些孩子,在我幼时的理解中,他们都会是将来的科学家,建设国家的栋梁之才,推动人类文明进步的主力军。那么,他们会不会来?他们会来吗?他们不会来吗?我想,他们还是会来的,毕竟,小平邦彦已经在这个世界来过,并且留下了他的思想。

 

庭有枇杷树,吾妻死之年所手植也,今已亭亭如盖矣。

——《项脊轩志》  明·归有光

 

关注 哆嗒数学网 每天获得更多数学趣文

 

来来来,一起来做数学时钟

 

原文作者,Antonella Perucca ,本文原载于+plus magazine网站。

翻译作者,donkeycn,哆嗒数学网翻译组成员。

校对,小米。

 

 


关注 哆嗒数学网 每天获得更多数学趣文


在钟面上,你可以找到数字1到12——但是稍微改变一下,你能用别的方式表示这些数字吗?

 

答案是肯定的.例如,你可以利用和、积、幂把表示为2+2、2×2、2².如果你喜欢这个数,你也可以用“取上整函数”(不小于该数的最接近的整数)把表示为 ⌈π⌉ .显然存在无穷多种方式来表示,而哪种是最好的,取决于个人喜好.一般来说,你可以用自己最喜欢的方式来表示1到12,从而制作出专属于自己的数学时钟.

 

如果你想寻找一些独特的东西,你可以使用e、π、i(虚数单位)通过欧拉恒等式来表示:

 

 

 

或者,如果你喜欢巴塞尔问题,可以把表示为所有正整数与π的乘积的平方的倒数和的倒数(译者注:原文有误,少了最后的取倒数):

 

 

作为一个更具体的例子,你可以从数字1到9中任选一个,然后仅用选定的这一个数字(可以重复使用)和数学符号来表示钟面上所需的所有数字(下面的图中提供了一些示例).


更一般地,对于任何给定的一个实数(可以重复使用),只需要配上适当的数学符号,就可以表示从1到12的所有整数了.原因是:我们总可以找到一个合适的表达式来表示1.具体来说:对于任意一个不大于1的正数,只需用取上整函数(即向上取整数)即可;对于任意一个大于1的正数,我们可以把1表示为把x的x次方根向下取整,可以用如下的对数恒等式来检验:

 


最后,对于负数,可以通过取绝对值变成正数;对于0,可以使用0! = 1.

 

市面上有许多数学时钟,钟面上有着各种各样的表达式.偶尔,你会发现钟面上会有某个数列的前12项,而不是1到12.例如,你可能会碰到前12个斐波那契数:

1,1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

同样地,你也可以使用字母A到L.

 

另一种选择是:写下某个方程,使得所要表示的数是该方程的唯一解,例如,把5表示为:

x² + 7 = 10x -18

 

还有一些数学时钟,钟面上的方程有不止一个解,但恰有一个解在1到12的整数中.一般地,有时数学时钟上是有数学错误的(例如,3并不恰好等于)!

 

尽管如此,在与数字们相处的过程中,你可以做任何事情来获取乐趣.因此,我们提议你来制作专属于你自己的数学时钟,当然如果你需要一些灵感的话,这里有一些例子.

 

数学时钟主题

 

在下面的那些图中,你可以找到各种各样的数学时钟,包括1到12的各种不同的表示法.你可以从中选出一个打印出来,并用它作为钟面(例如,你买一个定制钟面的钟),或者你可以简单地将选定的数字的表达式直接放置在钟面上或周围.你也可以买一些可以直接在钟面上写字的钟,这样你就可以在闲暇的时候更改你的数学时钟.

 

这里是一些例子:


数字1到9的钟

 

从十进制数字1到9中任意选定一个,然后用只含有选定的那个数字以及算术运算的简短的表达式来表示整数1到12.这里我们使用的是基本的算术运算,以及幂和平方根运算.


这里是一个数字7的钟的例子.下面给出1、2、3、4、5、6、8和9的表达式(注意,对于数字5、6和7,我们只使用了基本的算术运算).

 

 

数字1、2、3主题

 

只可以按照数字1、2、3的次序且每个数字恰好只用一次可以表示整数1到12.这里我们使用基本的算术运算,以及幂、平方根、阶乘运算(正整数n的阶乘,记为n!,定义为从1到n的所有正整数的乘积)和取下整函数 ⌊⌋ (这个函数将一个实数对应到不大于它的最接近的整数).

 

 

π钟

 

只使用、基本的算术运算、取下整/取上整函数 ⌈⌉/⌊⌋(这两个函数分别将一个实数对应到不大于/不小于它的最接近的整数)可以表示整数1到12.

 

 

e钟

 

只使用e、基本算术运算、取幂、取平方根、以及取下整/取上整函数可以表示整数1到12.


二进制钟


在这里,我们把1到12写成二进制的形式,即只使用数字0和1.

 

素数钟

 

在这里,我们只写出1到12中的素数.

 

 

 

 


中文数字词钟

 


在这里,我们用中文数字表示数字1到12:您可能注意到数字11、12是如何分别由对应于10的中文数字与对应于1、2的中文数字组成的.

 


玛雅数字钟


在这里,我们使用玛雅数字表示数字1到12:一点代表数字1,一横代表数字5.


π钟、e钟、数字1到9的钟以及数字123钟都是由作者开发的(对于123主题,我们从数学时钟中获得了一些灵感).

 


更多的例子...

 

 

 

 

 

关注 哆嗒数学网 每天获得更多数学趣文

 

混沌与秩序:拉姆齐定理告诉了我们什么?

 

作者,张明智


关注 哆嗒数学网 每天获得更多数学趣文

 

 

电影《美丽心灵》中有一段非常浪漫的场景:纳什和艾丽西亚站在喷泉边,仰望星空, 艾丽西亚说自己曾数星星数到了 4348 颗,纳什笑着回复,咱俩真是一对怪胎。接着,纳什 让艾丽西亚选一个形状,动物随便什么都可以。艾丽西亚想了想说,雨伞。纳什走到艾丽 西亚背后,拿起她的手,在星空中用星星连出一个雨伞的形状。艾丽西亚芳心瞬间被俘获, 于是央求:再来一次,再来一次嘛!来画个章鱼

 

 

姑且不论纳什是否做过这么浪漫的事,也不论纳什是否有这样的本领;假如是真的, 我们想问的是,纳什为什么自信可以用星星连出任意的形状呢?答案或许藏在一个数学理 论中,这就是组合数学中的 拉姆齐理论(Ramsey Theory)

 

拉姆齐理论的核心可以概括成:完全的无序是不可能的。更具体的,Ramsey 理论中 典型的问题是:为了保证在某个集合(或系统)中有某种性质(或结构)一定出现,这个 集合的元素个数应该达到多少?从最初的拉姆齐定理到后来发展出的众多拉姆齐型定理都表明:一个集合只要元素数量达到某个临界值后,一定会出现我们预先定义好的某种 性质或结构。纳什之所以自信可以画出任意的形状,是因为星星的数量非常巨大,因此可 以保证一定会出现想要的形状。除此之外,我们熟悉的鸽笼原理也是拉姆齐理论的一个例子。

 

 

鸽笼原理传统的理解是,n + 1 只鸽子飞进 个鸽笼,一定会有一个鸽笼里面至少有两只鸽子。如果遵循 Ramsey 理论的思想,我们可以把鸽笼原理换一种方式理解:给定 个鸽笼,如果想要鸽子“同笼”一定发生,那我们至少需要多少只鸽子?答案是 n + 1

 

再换一套语言来理解鸽笼原理。假设有 n 种颜色用来给鸽子上色,如果要保证一定出现“同色”鸽子,问至少需要多少只鸽子?答案还是 n+1

 

再换一套语言。假设有 A,B 两 个集合,其中集合B中有n个元素(即势为n)。现在从集合 A 向集合 作映射 f,如果要保证一定会出现 f(a) = f(b),问集合A元素个数至少是多少?答案还是 n + 1。 

 

 

从这个角度看,鸽笼原理,以至拉姆齐理论其实是在探讨这样的问题:如何从不确定性中抽取出确定性,或者说如何从混沌(Chaos)中找到秩序(Order)。不确定性是说鸽子飞进鸽笼鸽子的染色方案看成映射因为不同的映射构成一个随机事件的空间,有些随机事件满足我们想要的性质,有些则不能;另一方面,如果我们扩张这个空间,则想要的确定性就一定会出现。这个转变一定会有一个临界状态和临界值,就像水结冰对应的临界状态是冰水混合,对应的临界值是 0°一样。在鸽笼原理中,因为我们想要的性质比较简单,这个临界状态正好是鸽子占满鸽笼且均匀分布在鸽笼中,因此对应的临界值是 n(限制条件的线性函数),这也是为什么看起来鸽笼原理好像是带余除法的应用。 

 

首先看一个代数的例子。我们 1 依次开始往后写正整数,假设我们有红黑两种颜色的笔,在每个整数写好的整数上涂上红色或者黑色。如果想要一定会出现一个长度是3同色的等差数列,问至少要写到几?答案是 9。显然,这里的临 界值是 8。临界状态有很多,我们呈现其中一种,如下(下面的2457涂上红色,部分平台不显示颜色,请自行脑补)

):

 

12345678

 

对于这个临界状态,如果再添加一个 9,我们来看一下是否一定会出现长度为3同色等差数列。

 

首先假如 9 是用红笔写的,那么在123456789 中,57构成了一个长度为3的等差数列,从而满足要求;如果 9 是用黑笔写的,那么数列就变成了 123456789其中 36构成一个长度为3的等差数列,也满足要求。

 

这个结论是 Van der Waerden 定理的一个特例,这里我们只是用一种临界状态说明了 下结论,定理完整的证明远为复杂。不过从这个例子可以看出,我们依旧想从巨大的混沌中找到秩序,而且我们是一定能找到的,只要这个系统足够大。

 

再看一个几何的例子。假设欧式空间的平面上散布着一些点,满足任何三个点都不共线。在任意两点之间连线段,如果想要最终的图形一定会包含一个凸n边形,至少需要多少个点?我们不妨从最简单的情形开始考虑。n = 3 时,显然只要 个点就一定会出现三 角形;n = 4 时,相应的临界值是4,也就是说至少需要5个点才能保证一定会出现凸4边形;n = 5 时,相应的临界值是 8。下面两个图分别是 n = 4 和 n = 5 的临界状态:

 

 

 

对于一般的 nErdos−Szekeres猜想说:至少需要 2^(n−1) + 1 个点(任意三点不共线),才能保证最终的构型一定会出现凸 边形(x^y表示xy次方)。这个猜想至今未解决,最新的进展是 Andrew Suk 于 2016 年发在《美国数学会杂志》的文章,他证明了至少需要 2^(n+o(n)) 个点

 

最后再回到鸽笼原理。根据鸽笼原理我们知道,367 个人里面一定会有两个人生日是同一天,所以同日生这种秩序/确定性所对应的临界值是 366。所谓确定性就是说这个事件的发生概率是 1,如果我们把这种确定性的要求稍微降低下,改成同日生的概率 是 99.9%,也就是说只要有两个人他们同日生的概率达到 99.9% 就可以,那这个时候对应的临界值是多少呢?答案非常出乎意料,不是 365364……,而是 69,也就是说 70 个人 里面有两个人同日生的概率是 99.9%。更多细节,欢迎查询生日悖论。 

 

 

所以如果从概率的角度看鸽笼原理,可以更精细地看到这种不确定性到确定性的转化过程。事实上,概率方法作为组合数学中非常前沿的一类方法,应用非常广泛,包括很多拉姆齐理论的具体结论都可以用概率方法来证明。

 

 

 

关注 哆嗒数学网 每天获得更多数学趣文

 

这真的是素数的公式!

 

关注 哆嗒数学网 每天获得更多数学趣文

 


愚人节期间,我们哆嗒和往年一样,发了一篇愚人节的整蛊文章《素数公式发现,所有数学之谜即将揭开》,没想到大家和我们一起玩的很嗨,真是一个欢乐的愚人节。

 

文章中我们写出了下面这样一个公式,并说它是第n个素数p(n)的表达式:

文章还专门解释了方括号[x]是取整函数,p!表示阶乘,并规定0! = 1。

 

欢乐归欢乐,因为愚人节的关系很少有人注意到我们贴出的公式本身是不是对的。

 

在这里,我们哆嗒数学网的小编负责人的说,如果只从等式两端是否相等的角度来说,这绝对是如假包换、童叟无欺、“珍珠”都没这么真的素数公式。整篇文章,也许就这个公式是靠谱的。

 

这个公式其实写进了不少数学科普书,要解释它也很容易。

 

说来奇怪,按照一般人的标准课程,我们大多数人对数学中数论知识的学习都集中在小学。到了初中、高中除了一些竞赛需求,几乎不怎么学习数论了。到了大学,也只有部分专业的同学才学习初等数论。

 

初等数论中,有很多有趣的知识,和数数差不多,也就是我们解释这个公式的重点。

 

公式有两个“连加号”Σ,也就是我们要解释的重点。

 

数素数的π(x)函数

 

给定一个整数x,我们把不超过x的素数的个数表示为π(x)这个函数。比如不超过6的素数有2、3、5三个,那么π(6) = 3 。 不超过11的素数有2、3、5、7、11这5个素数,于是π(11) = 5。

 

这样,很容易看出,如果是第n个素数p(n),π(p(n))  =  n, 而且x < p(n) 时候π(x) < n(即π(x) ≤ n), x ≥ p(n)的时候π(x) ≥ n 。

 

这个时候π(x) 还只是数数游戏的,我们需要表示成一种只有加减乘除的东西。

 

 

利用威尔逊定理把π(x)函数表示出来

 

学过初等数论的同学们都知道一个叫做威尔逊定理的命题:

 

p是素数或1,当且仅当 (p-1)!+1是p的倍数。不止如此,当p是合数的时候(p-1)!还是p的倍数。

 

有了这个,我们可以分析分母了那个连加号了。

 

我们先看分母上连加号的内部:

这里,k=1的时候,上面的式子值是1。

 

根据威尔逊定理,当k是合数的时候,[(k-1)!/k]是整数,所以方括号可以去掉。上面式子的值其实是[1/k]。对于正整数,值是0。

 

当k是素数的时候,(k-1)!/k = ((k-1)!+1)/k - 1/k,所以对右边的方括号做一些简单变换,可以得到整个式子是值是1。

 

所以当连加号的k从1跑遍j的时候,实际上是一堆1和一堆0的加总。k是素数或1的时候是1,合数的时候是0。这些1加起来正好是不超过j的素数的个数加上1,即1+π(j) 。


伯特兰-切比雪夫定理、π(x)和素数公式

我们已经把开头的式子改写了成下面的样子了:


看看连加号内部根号下的部分,


这是一个关于j的递减的式子,关键点在j = p(n) 这一处。当j ≥  p(n)的时候π(j) ≥ n,分子小于了分母,取整后就是零了。

 

相反,当j  <  p(n) 的时候π(j) <  n就是说π(j) ≤  n-1,这样分母不会比n大,取整后是一个不小于1但不超过n的整数。

 

好了,我们都知道n的开n次根号是不小于1且严格小于2的。利用这个我们能得到下面的结论:

 

当j  <  p(n)的时候整个连加号内部的式子(下图式子)的值都是1,j ≥  p(n)的时候都是0。

所以当连加号的j从1开始一直的时候,实际上是连续的几个1相加,然后到p(n)开始都是0相加。正好跑了p(n) - 1个1。

 

至于为什么跑到的终点是2的n次方,这是因为

 

伯特兰-切比雪夫定理:对所有正整数n,n和2n之间必有素数。

 

利用这个定理,你能归纳出,第n个素数p(n)不会超过2的n次方。


于是素数公式出炉。

 

愚人节的文章还给出另外一个公式,其实是换汤不换药啦。


一点心得

 

好了,对于这个公式你们想说什么呢?复杂度太高?因为他里面有阶乘有指数!矫揉造作?这个和一个一个数有什么区别?

 

理由也许都对!这些理由或许就是即便看上去把素数写成了一个“简单公式”,也对和素数有关问题的解决没有任何帮助的原因。

 

但它的确是一个正确的公式,也许可以看成“正确的废话”素数公式版吧。

 

不过,读者中有第一次见这个公式的小伙伴,是不是也感到一些有趣呢——你们可以拿去继续骗人呐!

 

关注 哆嗒数学网 每天获得更多数学趣文

十个用于数学的编程语言

原文作者,MathBlog Team 

翻译作者,Serena,独行者,哆嗒数学网翻译组成员。

校对,浪荡游侠。

 

关注 哆嗒数学网 每天获得更多数学趣文

作为一位在计算机编程和数学两大领域都十分感兴趣的研究员,我希望借这篇文章和大家一起分享在数学研究当中,十大我最喜欢的编程语言。

我这么做是为了给其他研究者提供更多的选择,并提供更多建立模型的方法。

这些语言的介绍直接来源于他们各自的官方网站简介或维基百科,在字里行间当中,把个人的看法穿插其中

 

1. WOLFRAM LANGUAGE 

  

 

Wolfram语言MathematicaWolfram Programming Cloud使用的编程语言。

是由Wolfram Research公司开发的一种综合性多模态编程语言主要用于符号计算、函数式编程和规则型编程。在上述领域中,它自身设计使得它可以得到最大程度的广泛使用。

这种语言有许多使用场景并且时常是非常专业化的

 

我的看法

这是一种下降泛函、规则型的编程语言,他在处理符号计算上非常有优势尽管如此,我觉得和Go语言比较起来,Wolframe的使用并不简洁

它真正的价值在于它庞大的多领域标准库(特别是数学应用),这几乎比世界上任何其他编程语言都领先很多年。看过他们的演示程序以后这门语言的魅力会让你神魂颠倒

 

2. MATLAB / GNU OCTAVE

MATLAB(矩阵实验室)是由MathWorks公司出品的一门多模态数值计算运行环境被认为是第四代编程语言。它可以进行矩阵运算、画出函数和数据图像、实现算法、创建用户界面、提供接口以便和其他编程语言的程序(包括C, C++, Java, FortranPython进行交互

 

我的看法

它在数值计算方面处于霸主的地位其开源版本——GNU Octave也是如此

 

3. R

R编程语言为统计计算和图像处理提供了软件环境,这个软件 the R Foundation for Statistical Computing提供技术支持

R语言主要使用者是统计学家和数据开发者广泛用于统计软件开发和数据挖掘分析

数据挖掘开发者的调查和学术文献数据库调查发现近几年来,R语言受到了越来越多的关注

 

4. COQ / GALLINA

Coq是一交互式定理证明软件。它允许使用数学符号和命题的形式进行逻辑演绎对推演验证猜想的推理过程进行模式化处理,帮助人们找到比较合情合理的证明方法。然后,通过规范的格式说明中进行严格证明,最后建立起一个认证程序。

Coq在构建算子的衍生物——归纳构建算子理论的基础上运行程序

如果我们要把它当做是一种编程语言的话Coq实现了一种依赖类型的函数式编程语言;作为逻辑系统,它实现了高阶类型理论。

Coq提供了一种名为Gallina范式语言。用Gallina编写的程序具有弱规范化性质——让程序最终运行结束,不会陷入死循环

 

5. PROLOG

Prolog是一种与人工智能和计算语言学相结合的通用逻辑编程语言

Prolog扎根于一阶逻辑一种形式逻辑)。与其他编程语言不同之处在于Prolog定义式语言

Prolog的程序逻辑用关系描述,用事实和规则表示。它的运行方式进行查询的这些关系的内在联系来决定的

 

6. HASKELL

Haskell是一种标准化,通用纯函数式编程语言有非限定性语义和强静态类型Haskell的特色是拥有一个类型推断和延后计算的类型系统。

 

我的看法

对于使用非函数式编程的程序员来说,它是最难的语言之一.为了能熟练使用这门语言,程序员的学习曲线会非常陡。这同时也是非常值得的。因为它的无任何其他影响。正因为它有纯函数属性,所以它十分适合用来对数学问题进行分析并建立模型。而对于那些从事范畴理论和编程语言研究的人来说,它有极强的吸引力

 

7. IDRIS

Idris是一种拥有依赖类型的通用纯函数式编程语言。它的类型系统与Agda的类似。

它支持交互式定理策略证明可以与Cop媲美定理证明开始之前,我们就可以将重点放在通用编程上。

Idris的其他目标是充分性能,它的副作用也容易得到控制,并且他还支持在特别针对于嵌入式领域中应用语言的实现

 

我的看法

作为一种研究型语言,它结合了HaskellCoq特性很有意思

 

8. JULIA

 

Julia一种用于技术计算的高水平、高性能的动态编程语言,对于其他技术计算环境的用户来说它的语法让初学者很容易上手

它提供了复杂的编译器、分布式并行处理数值精度一个可扩展的数学函数库。Julia的基础函数库大多数由官方维护人员编写,同时,它也集成了一些CFORTRAN开源成熟性能良好库来处理线性代数、随机数产生和字符串处理等问题。

 

我的看法

它是一种非常有前景的科学计算和数据科学语言。由于Jupyter项目,Julia也可以用于分享代码,并和他人一起协作完成项目

 

9. PYTHON

 

Python是一种广泛使用的高级、通用、解释动态编程语言

它的设计理念是要强调代码的可读性,变量系统是弱类型的,这样的特性让程序员用比CJava等语言更少的代码行来实现自身需求

该语言提供了一种旨在实现各种规模程序中都能清晰展示程序架构的方法

Python支持多种编程范式,包括面向对象、命令式和函数式编程或过程式的风格。它具有动态类型系统和自动内存管理功能,并有一个庞大而详尽的标准库。

 

我的看法

从数学和科学的角度来看,Python之所以有趣,是因为有大量的相关库可供这种流行的编程语言使用(例如, numpy, scipy, scikit-learn, Sage)

得益于这个丰富的生态系统,你能轻松地学到一门对科学计算来说非常友好语言。并且由于它很受欢迎,例子(Jupyter notebooks中的示例代码)随处可见

 

10. J

J是一种非常简洁的数组编程语言它最适合数学和统计编程,尤其是对矩阵执行操作的时候。它还被用于极限编程和网络性能分析。

与最初的FP/FL语言一样,J通过其默认编程特性支持过程式(与函数式编程不同)编程方式

 

 

我的看法

APLK一样,J是一种令人费解的语言。它的语言很简洁,很难读,但却强大得难以置信。如果您有兴趣采用新的方法来处理数据操作和分析的话,那么J值得一试。

这是一个快速排序的实现,让您了解我们正在处理的问题。

quicksort=: (($:@(<#[) , (=#[) , $:@(>#[)) ({~ ?@#)) ^: (1<#)

写得比较豪放。

 

上面的十种语言就是我眼中认为在数学领域中值得一试的语言。当然,如果您有更好的选择,欢迎留言表达你的个人见解

 

 

关注 哆嗒数学网 每天获得更多数学趣文

素数公式发现,所有数学之谜即将揭开

 

关注 哆嗒数学网 每天获得更多数学趣文


哆嗒数学网小骗今天从世界数学中心大联盟获悉。数学家们在1770年的一篇古代论文中发现,早在几百年年前,就有人发现并公布了素数的公式,但被人忽略了。

 

 

发现这个公式的数学家叫做威尔逊,他起初发现发现一个著名的关于素数的定理。

威尔逊定理:p是素数或1,当且仅当 (p-1)!+1是p的倍数。这里(p-1)!表示阶乘,即(p-1)! = 1·2·3……(p-1),并规定0!=1 。

后来人们在威尔逊的一个手稿中发现,威尔逊利用这个写出第n个素数p(n)的公式。这个公式只需要加减乘除和开方运算,以及中学生都学习过的取整函数[x],表示不大于x最小整数,对于正数而言就是x的整数部分,比如[3.1] = 3。

另外如果引入三角函数,公式还可以写成如下形式,依然非常简单。

数学家几千年来一直对素数的相关猜想着迷,前赴后继有很多数学家都在这些关于素数的孜孜不倦的探索者。著名的哥德巴赫猜想、孪生素数猜想、黎曼猜想都是关于素数规律的猜想。数学家们一直苦于没有找到一个素数公式,导致这些猜想依旧是世界难题,至今没有解决。

已知素数的相关成果还是当今密码学的基础。先行互联网的所有密码都和素数的规律有关系。素数公式的发现,将使这些密码变得毫无作用,可以预见不久的将来和密码账号有关的所有系统——比如银行账户、邮箱账号、游戏账号等——都将陷于极大的风险之中。

现在素数公式已经被数学界知晓,这意味着所有的这些素数的猜想将变得非常容易解决,地球上已经没有值得人类去思考的猜想了。哆嗒数学网的小骗了解到,因为这个事件,世界数学中心大联盟获悉将向升级为宇宙数学中心大联盟,向太阳系、银河系乃至全宇宙征集有价值的数学问题。


今天是4月1日,我们哆嗒数学网的小骗们为你报道了如此重大进展。数学有如此进展,大家都很开心。如果你感到开心,你就拍拍手。如果你感到不适你就先忍着。

 

关注 哆嗒数学网 每天获得更多数学趣文