被人忽略的“穷”猜想(五):关于倒数和的埃尔德什-图兰猜想(完结)
关注微信: DuoDaaMath 每天获得更多数学趣文
新浪微博: http://weibo.com/duodaa
导读语: 近十几年来,给数学猜想玩百万级悬赏似乎成了一种时尚。先有2000年3月Faber为哥德巴赫猜想给出100万美元悬赏,要求人类尽快把猜想两字改成定理。然后克雷研究所紧随其后,在5月悬赏700万美元,给出包括黎曼猜想、庞加莱猜想在内的7个问题的悬赏,每个100万,俗称“千禧年问题”。2013年,美国数学会发布消息,比尔猜想悬赏也提高到了100万美元。除了具体的数学问题的悬赏,对数家本身也进行百万级悬赏表彰。2002年,邵逸夫数学奖100万美元。2014年,科学突破数学奖300万美元。虽然数学家们并不以追逐奖金为数学研究的动力,但俗话说,重赏之下必有勇夫,在高额奖金刺激下,一定会有更多人投入到数学研究的行列中的。比如说比尔猜想,在没有100万的刺激之前,关注度定不会像现在这样高的。
然后,还有一些数学猜想,表述简单,但难度极大,几十年没有解决。这些问题,有的没有公开的悬赏,有的即使有悬赏,赏金也没有达到100万美元之巨。但这些问题,在很多人心目中,同样值100万美元。
这是哆嗒数学网《被人忽略的“穷”猜想》系列第五篇,完结篇:关于倒数和的埃尔德什-图兰猜想。
在他的诸多问题中,最贵的被悬赏3000美元。叫做关于倒数和的埃尔德什-图兰猜想。这个问题的彩儿后来被提高5000美元。不过,还是和100万没法比。
还是从简单情况说起。我们都知道,1+1/2+1/3+…把所有正整数倒数加起来是发散的。但如果我们不把所有整数取完,而只取其中的一个子集,在把子集的中的每个数做倒数求和,那么有可能收敛。比如,我们取所有2的正整数次幂的集合,得到1/2+1/4+1/8+…,这个能算出来是收敛于1的。
我们只来关注让那些倒数和发散的子集,并且认为这些子集都是从小到大排序的。那么,这个子集里是不是一定能包含任意长度的等差数列。打个比方,我叫出一个数100,你就能在其中找到a, a+d, a+2d, ..., a+99d这样形式的100个数,而叫出1000,你也能找到p, p+q, p+2q, ..., p+999q这样的。无论叫多少,都能从中找出对应个数的数,他们正好是等差数列?这就是关于倒数和的埃尔德什-图兰猜想。
问题有多难呢?这里举一个例子,比如利用数论知识我们可以知道,如果上面的子集取所有质数,那么所有质数的倒数和是发散的。那么质数中存在任意长度的等差数列?答案是肯定的,这是由陶哲轩和格林合作完成证明。这个证明可以说是陶神在数论方向的顶级神作之一,他能获得菲尔兹奖和这个作品有很大关系。也就是说,在这个问题里,找一个极特殊的情况,也有可能是菲尔兹级别的问题。
不过,陶哲轩和格林的方法太过于特殊,很难推广到一般情况。要完全证明,估计还很久远。
关注微信: DuoDaaMath 每天获得更多数学趣文
新浪微博: http://weibo.com/duodaa
评论已关闭