2020年2月

数学物理、理论物理传奇巨擘弗里曼·戴森去世

关注 哆嗒数学网 每天获得更多数学趣文

 

 

根据美国国家地理杂志网站消息。著名物理学家、数学家和作家,普林斯顿高等研究院教授弗里曼·戴森(Freeman Dyson)于2020年2月28日去世,享年96岁。

 

 

戴森是在学术界的经历堪称传奇。他没有博士学位,但仍然有最顶级的研究成果,是没有博士学位任职顶级学术职位最著名的例子之一。

 

戴森在1956年发表的论文《自旋波》堪称物理学史上的重量级论文之一,也奠定了他在量子电动力学中的地位。

 

戴森提出的假想模型“戴森球”——一个是把太阳或恒星包围尽可能利用其光能的构想,成为众多科幻作品的素材。

 

戴森还热衷于写作,撰写过很多著名的普及作品。比如:《宇宙波澜》、《全方位的无限》、《想像的未来》等等。其公众作品中,对比不同风格数学家的演讲稿《飞鸟与青蛙》也脍炙人口。

 

以下是《飞鸟与青蛙》节选

 

有些数学家是鸟,其他的则是青蛙。鸟翱翔在高高的天空,俯瞰延伸至遥远地平线的广袤的数学远景。他们喜欢那些统一我们思想、并将不同领域的诸多问题整合起来的概念。青蛙生活在天空下的泥地里,只看到周围生长的花儿。他们乐于探索特定问题的细节,一次只解决一个问题。我碰巧是一只青蛙,但我的许多最好朋友都是鸟。

 

这就是我今晚演讲的主题。数学既需要鸟也需要青蛙。数学丰富又美丽,因为鸟赋予它辽阔壮观的远景,青蛙则澄清了它错综复杂的细节。数学既是伟大的艺术,也是重要的科学,因为它将普遍的概念与深邃的结构融合在一起。如果声称鸟比青蛙更好,因为它们看得更遥远,或者青蛙比鸟更好,因为它们更加深刻,那么这些都是愚蠢的见解。数学的世界既辽阔又深刻,我们需要鸟们和青蛙们协同努力来探索。

 

 

关注 哆嗒数学网 每天获得更多数学趣文

乘法表和加法表派生的数学难题的一个进展

关注 哆嗒数学网 每天获得更多数学趣文

 

 

“和-积”问题的最新进展引起了一个著名的数学结论,它揭示了有限数系的威力。

在一片空旷的地方做侧空翻是一回事,但在一个类似浴缸狭窄的地方做却是另一回事。同样,从某一个角度来说,这正体现了过去二十年多年数论中最重要的结果之一的精神。

 

我写过关于“和-积”问题的东西。它要求取任意数集,然后把它们排列在一个表格中,使得每个交叉格中的数字等于对应格中数的和或者积。

 


“和-积”问题猜不同的和或者积的个数的数量级大致是N²(N表示构造网格所使用数字的个数)

 

“和-积”问题可以使用任何实数集生成网格,你也可以将此问题限制为特定的比实数更小的数字系统。这些自我包含的数字系统被称为“有限域”。

 

在数学中,“域”是指你能在其中进行加减乘除四则运算的任何数字系统。全体实数形成了一个域。你对任何两个实数进行四则运算得到的结果是一个实数。或者,换一种方式说,实数的算术运算不会产生非实数。

 

整数不能形成一个域。确实,你对任意两个实数进行加减乘能得到第三个实数,但是3除以2你将得到3/2,而3/2不是一个整数。

 

“有限”域是一个由有限个数字组成的数字系统。有不同类型的有限域,但最简单的有限域被称为“模”算术或者“钟表”算术。在模算术种,当你到达最后一个数字时候,你又回到了开始,就像沿着一个钟表面数数一样。例如,如果你下午七点去参加一个聚会,六个小时后回来,那么你将在上午1点回来。用专业语言说就是,7+6=1(mod12)

 

 

实际上,钟表上的12个数字并不形成一个域,这是数论中最为关键性的一个结论:模数字系统能形成一个域只有当元素个数为素数。如果模数字系统元素个数不是素数,例如钟表12个数字,那么你将遇到两个非零数乘积为零的奇怪的情形。例如, 6 × 4 = 24,在基底为12的模数系中24即为0。这也将导致除法运算也会被破坏。但是如果模数字系统元素个数是一个素数,那么两个非零数乘积就永远不会是零。

 

在数学中,有限域已经得到很多重要的结果。作为自成体系的算术世界,它们包含着丰富的结构,这使得数学家能够利用它们去解决任何相关的问题,从质数到多项式方程解的模式。

 

2003年,布尔冈(Bourgain),卡茨(Katz)和陶哲轩成为一批在有限域上的“和-积”问题取得进展的数学家。他们证明加法表和乘法表中使用的不同数字的总和只比生成表格使用的数字的个数在数量级上略略大一点点。这个结果在数量级判定上的估计但是意义却很重大。

 

 

布尔冈, 卡茨和 陶哲轩证明了加法和乘法之间一个里程碑式的联系。


卡茨说:“这是我们能得到的一个很小的结果,但是它确实原创结果”,卡茨目前在加州理工学院工作。

 

这篇论文的作者们是一个强大的队伍:卡茨是一个业内饱受盛赞的数论专家,布尔冈和陶哲轩被列为同时代顶级数学家。布尔冈在64岁时死于癌症,他是为这个证明提供了大量支持。几年前,他解决了一个不同种类的“和-积”问题。当他转向“和-积”问题有限域版本时,他对获得证明有着非常清晰的思路,但是他请来卡茨和陶哲轩来帮助解释他试图使用的方法的所有细节。

卡茨说:“基本上可以说,布尔冈知道如何做,他请我们帮忙因为他想写一些关于他的方法的应用。”

 

自从2003年以来,其他数学家在他们三人的基础上改进了关于不同数字和或者积个数的结果,得到了甚至比他们三人得到的更大的数字。数学家也把他们证明的技术应用到数学其他方面,包括研究膨胀图形和多项式与素数相关的问题。

 

 

对于“和-积”问题,有限域(你能握在手上)比起实数域也许更合适。但事实上,在有限域情形下,这个问题更深刻,也给其他数学家更多的暗示。

 

原因是因为有限域上的“和-积”现象成立比起实数域上更加困难。问题的原来形成机制推断,任何数字集合将产生比该集合元素个数更多的和与积。当考虑实数集合时,由于它有无限多,也许这一推断不是一个惊讶的结论。但是这对有限域成立,因为有限域很少有空间移动?这就像在浴缸成功完成侧空翻。

卡茨说:“实数是无限集,有无限多的空间可以生长。但是在一个有限域,只有有限的空间成长,所以从生长的可能性意义来讲,它其实是一种更强的结论”

 

 

关注 哆嗒数学网 每天获得更多数学趣文

你写数学文章用Word还是LaTeX?

关注 哆嗒数学网 每天获得更多数学趣文

 

 


各路厂商一直在试图开发文字处理软件中支持LaTeX排版语言的公式编辑器。下面描述了如何入手做这件事。

 


使用LaTeX还是Word?对于物理学家和数学家们,答案是显然的。但是对于其他领域的科学家们,LaTeX的优点还未被充分认识到。


LaTeX作为一个用于创建和精确排版科学手稿件的开源软件系统,它的工作方式更像是编写代码而不是写作。自1985年问世以来,它一直流行于数学、物理和计算机科学等学科。


支持者之所以青睐LaTeX,是因为它提供的对文档排版的完全控制,或者说它代表了对一些商业软件开发者尤其是微软的一种叛逆。另外的人则认为LaTeX过于复杂,虽然用它可以最大限度完成自己的排版需求。2014年的一个研究(M. Knauff & J. Nejasmic PLoS ONE 9, e115069; 2014)让来自不同领域的科学家评测微软Word和LaTeX。根据数据科学公司Altmetric(Altmetric由Holtzbrinck出版集团旗下的Digital Science公司所有,Holtzbrinck出版集团在Nature出版社的Springer Nature拥有股份)的数据,这篇文章成为下一年线上讨论最多的十大文章之一。而这篇文章已经被浏览超过240,000次。


然而在过去几年中,这些编辑工具的界限已经模糊了。在2017年,微软使在Word中已经可以直接使用LaTeX的语法编写公式,而且在2018,微软放弃了Word内置的公式编辑器。其他一些文本编辑器也开始支持LaTeX的语法,允许新用户在其中随心使用LaTeX。


“对于我来说,当我想要精确排版时我会选择LaTeX,当‘差不多就行’时以及我的合作伙伴都用Word时,我就用Word”费城的宾夕法尼亚大学的生物信息学家Casey Greene如是说。


编写公式代码


不像Word,LibreOffice以及Open Office这些“所见即所得”的文本编辑器,用LaTeX写文档就像是编写代码。普通文本被放进花括号中,描述文本格式的命令放在括号前面(例如,斜体字用命令\textit{text},黑体字用命令\textbf{text}),而表格是一块一块生成的。这些源代码随后被编译成简洁流畅的PDF便于阅读。


公式编写被认为是LaTeX最擅长的方面(参见《在LaTeX中编写方程》)。这种语言拥有大量的快捷方式来展示数学符号。(2017年版的《LaTeX综合符号列表》The Comprehensive LaTeX Symbol List包含约14,000个符号)加拿大伦敦西部大学的心理学家John Paul Minda说:“我开始使用LaTeX的原因之一是我能够轻松编排出漂亮的公式。”


用LaTeX中编写方程

在LaTeX中生成爱因斯坦著名的方程E = mc^2就跟直接手写一样简单。

 

唯一的不同是“倒V符”(^),它表明其后的数字是个上标。但是为了在LaTeX中恰当地展现方程,你需要把方程内容包在一个指令中。方括号和反斜线(\[E = mc^2\])能让方程在它所在行居中显示,而如果用美元符号来包含方程($E = mc^2$),那么方程会被置于文本中,而不会单独成行。

 

LaTeX文档通常在顶部包含命令来明确文档的长度和宽度(例如A4纸大小)以及格式。为了让数学命令生效,使用者必须事先声明使用的哪些数学包。TeX综合档案网有超过5,000个工具包,能让LaTeX用户使用各种各样的文字,从作家J. R. R. Tolkien(译者注,代表作品有《霍比特人》、《魔戒》)脑袋里的精灵文字到蒙古文字,以及模仿报纸的排版风格。

 

对于更加复杂的方程,用户需要学习他们想要使用的命令的句法规则。例如,分数可以通过输入\frac{numerator}{denominator}来创建,\int_{a}^{b}表示区间[a,b]上的积分。这样,函数x2 + (1/2π)x在区间[0,100]上的积分可以写成\int_{0}^{100} x^2 + \frac{1}{2\pi}x dx。基于浏览器的编辑器Overleaf在go.nature.com/2eh1daz上提供了LaTeX方程编写的概述。

 

不得不说,2014年的一个比较LaTeX和Word两种编辑器的研究表明,LaTeX仅仅在公式编辑上的表现好于Word。另外文章作者还注意到,尽管LaTeX用户“频繁说明他们有偏好的编辑器”,但如果处理文本和表格,Word被证明更为快速且用户更少犯错。


甚至一些LaTeX批评者例如伦敦国王学院的一位计算社会科学家Daniel Allington也得承认LaTeX编辑方程比其他工具更优秀。这位学者曾在他的博客上痛骂那些被他称为“LaTeX迷恋狂”的人。

 

但是Allington同时也指出,如今科学家可以在使用LaTeX的方程句法规则的同时而不必抛弃“所见即所得”的编辑器。例如,Allington使用了一款叫做MathJax的线上工具。他往一个网页表格中插入了几行LaTeX代码——不必进行任何安装——然后MathJax就在一个网页中生成了对应的方程。

 

Word用户也可以直接用LaTeX语法进行编写,然后点击将其转换成排版好的公式。微软声称Word支持“大多数”LaTeX表达式,然而它的网站列出了不支持的20个关键词(例如角度符号\degree)。

 

对于谷歌文档用户,Auto-LaTeX附加组件可以将LaTeX公式转成嵌入图片。波士顿东北大学的海洋环境科学家Katie Lotterhos说,这些组合工具对她来说尤其有帮助因为她的大多数合作者不知道如何使用LaTeX。她补充道,有个缺点是,这种组合工具把公式以图片的方式插入文档“便于同行审议但对于排版人员来说并不常见”。

 

类似的,LibreOffice作为Word的免费替代品,它的用户可以用一个叫做TeXMaths的扩展工具编写公式,它能将LaTeX语法转换成一个PNG或者SVG格式的图片。

 

掌握LaTeX

 

希望进一步了解LaTeX的用户可以安装一个LaTeX软件包,例如在Windows平台运行的MikTeX,在Mac OS运行的MacTeX以及适用于Linux系统的TeX Live。这些软件都是免费下载和使用的,而且包括了将LaTeX“源码”编译成PDF的工具。虽然一个微软发言人声称他们确实为一些机构的研究人员提供了免费的线上Word版本,但是Word还是向每位使用更多Office软件套装的用户收取了每月8.25美元的费用。


这些LaTeX软件包为在LaTeX中编写整个PDF文档敞开了大门。Philip Judge作为一位LaTeX的支持者以及位于科罗拉多州博尔德的High Altitude天文台的一名天文学家,认为这样能让研究人员“真正控制”文档的外观。而对于英国牛津大学的进化人类学家Laura Fortunato来说,正是因为文字处理器的“不可靠”促使她在博士期间学习使用LaTeX,这种“不可靠”体现在当“你认为你编辑没有出错时”,这些文字处理器却可能会出现“随机的”错误。


但有时候用LaTeX编辑会让人感觉繁琐。“对我来说LaTeX主要的缺点是我必须不断地编译文本来查看文档是什么样子的,然后如果编译出错我就得花时间来追踪错误。”同样是牛津大学的钻石生长研究员Shannon Nicley这样说。


Nicley的解决方法是使用基于浏览器的编辑器Overleaf,它可以实现多人协作编辑科学文档(Overleaf也是属于Digital Science的产品)。Overleaf能够在显示文章源码的同时在旁边显示实时PDF,这意味着使用者可以迅速看到他们对源码的修改如何转为完成的文档。个人用户可以免费使用Overleaf,但如果想要使用更多功能就要每月支付14美元,例如协同办公以及实时同步到代码分享网站GitHub。


那么我们值得精通LaTeX吗?这取决于研究者:是否频繁使用公式,是否需要精细控制PDF,是否有时间去学习一门新语言。


LaTeX基本的文档编写相对直接。然而制作表格却并非如此。不像Word,LaTeX表格不能直接画出来放到页面上,必须一维一维地编程序。在2014年的调查中,即使是LaTeX专家,比起使用Word的新手,在30分钟的测试时间中用 LaTeX生成表格犯了更多的错误,编辑的文本也更少。Nicley说:“在LaTeX中生成表格让人望而生畏,即使你之前已经做了很多遍。对我来说更快的制作表格的方式是打开一个新的Excel表格,然后把表格的基本内容打出来,再直接复制粘贴到Word,这样我能很方便地调整表格的外观和内容。”


LaTeX并不是唯一的编程式的文档排版工具。Allington经常使用Markdown,他认为它比LaTeX更加“轻量级”,因为排版命令更加直接清晰。威斯康星大学麦迪逊分校的计算生物学家Anthony Gitter说,Markdown“几乎没有技术性的句法规则可供文档编辑参与者快速上手”。这是Gitter和他的同事包括宾夕法尼亚的Greene使用Markdown撰写生物和医药方面的深度学习公开评论的原因之一。Gitter警告说,文档编辑参与者的修改会让代码无法编译成PDF,这种事情在LaTeX的合作编辑中更加可能发生。


莫斯科物理技术协会的研究员Dmitry Fedyanin说,部分杂志和会议不接受Markdown格式的文档。


《自然》制片总编辑Simon Gribbin举例说,《自然》杂志更喜欢用Word写的递交的文章,因为杂志的排版系统要求这种格式。然而依然有大约十分之一被接受的文章是LaTeX格式的;Simon说这些文章在被发给技术编辑之前会被转成Word格式。


但由于《自然物理学》杂志包含了很多广泛使用LaTeX的学科,这些杂志编辑对文档格式的要求更加灵活。杂志主编Andrea Taroni解释说:“LaTeX正是物理学家们追求的编辑器,如果想让他们改用其他编辑器,无异于试图将一群乱跑的猫赶到一块。”

 

 

关注 哆嗒数学网 每天获得更多数学趣文

看看这位大神在三百多年前如何宅在家里学习微积分的

本文作者,Viktor Blasjo,乌德勒支大学数学教授。

翻译作者,misakaNet,哆嗒数学网翻译组成员。

校对:math001

 

关注 哆嗒数学网 每天获得更多数学趣文

 

 

克里斯蒂安·惠更斯是牛顿和莱布尼茨之前那一代最伟大的数学家。他曾作为科学院的重要成员待在在巴黎,并在那里度过了他一生中的最重要的时光,陪他在这的朋友们。那时莱布尼茨最想做的事无外乎加入这些令人尊敬的绅士们。莱布尼茨仰慕伟大的惠更斯以至于模仿他的一切,模仿他身为数学家的样貌甚至是他的假发。


由于当时时局动荡,加之法国政治环境恶化,外国人都被驱逐出境。莱布尼茨被迫回国,惠更斯也回到了他在荷兰的家族豪宅。而学院的人也都被诋毁为反动的平庸之辈。

但惠更斯并没有去过退休生活。尽管惠更斯年老体衰, 可他并没有放弃在数学学习研究领域与时俱进。而这意味着他要学习他以前的学生莱布尼茨所研究出的微积分新理论。人们常说“青出于蓝而胜于蓝”,说的是学生有可能成为老师,这里更有趣的是,老师有一天也会变成学生。

 

 

这件事的起因是。通过观察那些年来惠更斯和莱布尼茨的通信记录,我们可以看出,惠更斯学习的实践。我们也可以看到微积分的发明者莱布尼茨是怎样教授微积分的,以及在数学领域获得最高成就的人如何学习它。我们还可以看到科学院的前科学研究主任想在在微积分的前沿领域占有一席之地,也得脚踏实地地拿起纸笔。这份通讯记录是历史上独一无二的微积分起源的概览。


惠更斯的表现并不是一个循规蹈矩的学生。他是并不是只会抄公式、问作业。数学证明的细节并不是最大吸引他的地方。他最想知道这些新知识有什么用。他希望新的数学成果有更大的用武之地,不是为了单单的从逻辑上看起来正确,而是在更广泛的范围内成就有对人类有价值的事业。

因此,在掌握了求导之后,他怀疑二阶求导是否只是流于形式,还是真的对某些东西有用。他写信给莱布尼茨:

“我仍然对ddx(二阶求导)一无所知,我想知道你有没有遇到哪些必须要用到它的问题,这些才能给我学习它的动力。”

惠更斯的想要莱布尼兹告诉他:我为什么要学习二阶导数。引入它不是为了机械化的套公式,也不是为了证明而证明,抑或为了人为生造一些题目。不,绝不是那样。随便哪个数学家都可以编造出数不清的这种数学题目。一个新的数学理论一定不是靠解决它自己本身的问题来体现他的价值,而是靠着解决其他实实在在的问题来体现自己的价值。

莱布尼茨看懂了惠更斯的问题后,回复道:

“至于ddx(二阶求导),我经常要用到它。ddx之于dx,就好像外力之于物体,离心趋势之于转动速度。伯努利将其用于计算风帆形状的曲线,而我把它们用于计算行星运动。”

我们关心二阶导数不是因为其让我们再做一次求导运算的符号意义,我们关心二阶导数是因为它是数学上解决大量重要问题的好方法。你想要理解风把帆吹弯的机制吗?你想要描述行星怎么绕着太阳转吗?如果你想,那你也会想要理解二阶导数。

 

 

这并非在说惠更斯对纯数学和应用数学的偏好。举例来说,惠更斯在撰写关于研究钟摆问题的著作时,从具体情况中获得灵感,从而建立了一个彻底的数学模型来抽象且详尽地描述渐屈线和渐开线。他给出了一份一般证明,例如,任何代数曲线的渐屈线都是代数的。这些理论值得最顽固的纯粹主义数学家为之骄傲。

 

对于学习数学来说,最重要的不是应用而是动机。我们不会因为拒绝承认抽象数学的价值而放弃研究自然科学。我们研究自然科学因为她一再证明她自己有着出色的数学品味。而这是那些不能解决任何有价值问题,只能纠结技术上细枝末节的伪问题的平庸的数学家所远远不及的。惠更斯说道:

 

“我常常会认为,这些大自然展示给我们的曲线,以及大自然她自己描绘的曲线,可以说都具有十分显著的特性。就比如我们平时随处可见的圆。抛物线可以用来描述水的流动。椭圆和双曲线,恰好就是日晷的指针投射下来的影子扫过的轨迹,这也是我们在生活中随处可见的。轮子滚动一周轮子上固定的钉子可以描绘出摆线的轨迹。最后是悬链线,它在几个世纪前就走进了人们的视野却从未有人注意到它。在我看来,这几种曲线的价值,人们在自然世界中发现并主动研究出来的,而不是人们为了应用微积分而单独发明出来的。”

 

莱布尼茨肯定道:“你说的对,先生,不能纯粹为了消遣而研究曲线。”

 

如果现代的微积分书仅仅依靠同样的规则。翻阅任何一本标准的微积分课本章节最后的习题部分,你会发现大量的题目都“只是为了把微积分用在它们身上”而存在。——实际上这正是惠更斯所想要谴责的。当微积分的发明者和最优秀的学生都一致认同我们编写课本的方式过于愚蠢的时候,或许我们应该停下来反思一下。

 

当看到惠更斯对指数表达式表明了相似的观点时,现在的学生可能会对他更加同情:

 

“我必须承认,我无法理解把诸如未知数放在指数位置这种操作和自然之间的对应,除非你能指出它们有什么值得一提的用处,否则我是不会考虑把它们引入几何学的。”


莱布尼茨向他展示了那些表达式怎么解决具体的问题的,但惠更斯仍不以为然:“我看不出这些表达式对于那有什么帮助,因为我已经知道这个曲线很久了。”再说一次,先告诉我你的技术手段可以做什么,否则我就没有理由去研究它。如果我可以用其他方法做到同样的事情那你依然不能说服我。

 

我希望我们能有更多的小惠更斯在我们今日的的微积分课堂上。并且我深感忧虑是我们的填鸭式教育让不少学生原理微积分学习,其中不乏可能成为像惠更斯这样的大师的人。而后者甚至认为学习这样的数学实在是在浪费时间。

 

 

关注 哆嗒数学网 每天获得更多数学趣文

微型小说:显然

本文作者,安迁

 

关注 哆嗒数学网 每天获得更多数学趣文

 

 

那学期我选了门代数课。老师是个六十多岁的女教授,此数学分支的权威,瘦瘦的脸庞,眼里充满了数学的严格和确定,令我肃然起敬。

一开始听课的同学到也不少。可是随着日子增加,教室里的人数迅速地单调递减,最后只剩下连我在内的六个学生。面积不大的教室里,我们仍能够坐得很离散。我猜想所有难一些的数学课都是如此吧。

 

 

她总是一手拿粉笔,一手执板刷,在上课开始到下课结束的两个小时里,除了当中休息的十五分钟,不停地从左到右再从左到右一黑板一黑板地写和擦。当然,有时她会补充地讲一些没有写到黑板上的内容,比如“于是我们有”、“那么我们得到”、“这就是说”等等;另一些时候她还会停下来,拿板刷敲敲黑板的某个地方,提示说:“根据刚才两黑板前写在这个位置的那个引理,我们有”,然后继续往下写和擦。

我们坐在底下,顽强地把黑板上的内容忠实复制到笔记本上,精确到老师的每一个手误和涂改。当然,一个好学生是一个会提问题的学生。我们时不时地也要提出“这是5还是s”、“那是0还是o”,或者“刚才已经有引理4.34了,这个是不是应该叫引理4.35”诸如此类的问题,老师都耐心地一一给出正确的回复。

一般说来,只有上课开始的五分钟,我的思路才能跟住老师的讲述。随后的时间,则只能努力拷贝黑板上的内容,内心绝望地等待着下课,而脸上则装出莫测高深的思考模样。当老师的目光扫过我时,还要作出终于觉悟了的样子点点头。我很羡慕那些及早抽身退步的同学。现在开学时日已多,再另选课跟上相当困难,。更何况老太太对我的脸也已如她对有限阿贝尔群般地了解,不去上课在数学系走廊里碰见就会很尴尬。

可是有一天,我居然能跟住老师的讲课十几分钟!心中正畅快无比。就在此时,只听老师说道:“于是显而易见,我们有——”接着在黑板上出现了一串我无论如何不能明白的公式。我的脑袋同往常一样膨胀起来,可是这次我不希望这么快又掉回到那绝望的境地。

我听见我说道:“对不起,请问……”

老师把头扭过来,慈祥地等着我问“这是9还是g”。我觉得脸上凉凉热热,不知四种颜色是否足够描绘出我的面孔。我知道我要提一个很“愚蠢”的问题了。

“请问……为什么这是显而易见的?”

老师愣了一下,眼中现出以前我从没有看见过的疑惑之光,回过头去注视黑板。在接下去的几分钟里,她站在那里轻轻地嘀咕着什么,不断拿黑板刷在黑板各处指指点点,又不时看看自己的脚尖。我偷眼瞧了瞧同学们,他们好象没有嘲笑我提这么个蠢问题的意思,一个个都在各自忙着活动手腕。

我的心平静了一些。

突然,我看见老师把脸又转了回来,深邃的眼光射向天花板,仿佛要看破后面藏着防火石棉。慢慢地她的眼光落下来停在我的脸上,我看见那里已经恢复了平时的严格和确定。然后我听见了一生中听到过的最严密的回答:

“这显然是显而易见的!”

 

关注 哆嗒数学网 每天获得更多数学趣文