2020年3月

两位概率论顶级专家获得2020阿贝尔奖

本文主要内容转自阿贝尔奖官方网站。

 

关注 哆嗒数学网 每天获得更多数学趣文

 

 

根据阿贝尔奖官方网站公布消息,2020年度阿贝尔奖颁给以色列希伯来大学的希勒尔·弗斯滕伯格(Hillel Furstenberg)和美国耶鲁大学的格雷戈里·马古利斯(Gregory Margulis),以表彰他们在群论、数论和组合数学中开创性地使用概率与动力学方法。

 

 

弗斯滕伯格介绍

 

当希勒尔·弗斯滕伯格(Hillel Furstenberg) 发表其早期的一篇论文时,有传言说他并非一个人,而是一群数学家的化名。该论文涵盖的思想覆盖诸多领域,真的不可能是一个人的成果吗?

虽然这件事可能是杜撰的,但它说明了在弗斯滕伯格整个学术生涯中存在的一个事实:弗斯滕伯格拥有不同领域深厚的技术知识,并且在这些知识之间建立了深刻而令人惊讶的联系。尤其是,他在遍历理论领域做出了重要贡献,该理论在数论、几何学、组合论、群论和概率论中都有非常广泛的应用。

弗斯滕伯格1935 年出生于柏林。他来自一个犹太家庭。二战爆发的前几个月,他们设法离开德国,逃往美国。弗斯滕伯格的父亲死于途中,他则由母亲和姐姐抚养长大,后来他们生活在纽约的一个东正教社区。当 弗斯滕伯格看到老师在解释著名理论时陷入困境时,他开始对数学产生了浓厚的兴趣.这位学生喜欢自己寻找证据。“有时候坏老师会教出好学生!”他说。他高中和大学就读于叶史瓦大学,并于 1955 年获得学士学位和理科硕士学位。大学期间他就已经发表论文。《关于一种不定式的说明》(Note on one type of indeterminate form )(1953) 和《关于素数的无穷性》(On the infinitude of primes)(1955) 均发表于《美国数学月刊》上,后者为欧几里德的著名定理提供了拓扑证明,即有无限多个素数。

后来弗斯滕伯格前往普林斯顿大学攻读博士学位,他的导师是博赫纳( Salomon Bochner)。他于 1958 年获得博士学位,其论文为《预报理论》(Prediction Theory)。当这篇论文于 1960 年发表时,一位评论家曾说:“这是一篇一流的、高度原创的论文,论述了一个非常难的主题。”

分别在普林斯顿大学和麻省理工学院担任了一年讲师后,他于 1961 年在明尼苏达大学获得第一份助理教授的工作。在 1963 年开始发表的一系列文章中,他凭借《半单李群的泊松公式》(A Poisson Formula for SemiSimple Lie Groups) 继续确立了作为独创性思考者的地位。他的研究表明,随机游走在一个群上的行为与该群的结构有着复杂的关系(现称弗斯滕伯格边界(Furstenberg Boundary)的来源),这对格及李群的研究产生了巨大影响。他被提升为明尼苏达大学的正教授,但在 1965 年,他离开美国前往耶路撒冷的希伯莱大学,一直待在那里直到 2003 年退休。在其 1967 年的论文《遍历理论中的不交性、极小集以及丢番图近似中的一个问题》(Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation) 中,弗斯滕伯格介绍了“不交性”的概念,这是遍历性系统中的一个概念,类似于整数的共素性。事实证明,该概念已应用于数论、分形学、信号处理和电气工程等领域。在其 1977 年的论文《对角线测量的遍历行为和关于算术级数的塞迈雷迪定理》(Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions) 中,弗斯滕伯格使用遍历理论中的方法证明了安德烈·塞迈雷迪(Andre Szemerédi, 2012 年阿贝尔奖获得者)的著名结论,该结论指出,具有正上密度的整数的任何子集均包含任意大的算术级数。弗斯滕伯格的证明比塞迈雷迪更具概念性,并完全改变了这一领域。它的见解也变得富有成效,成为很多重要研究成果的依据,例如格林(Ben Green)和陶哲轩证明了素数的序列包括
任意大的算术级数。

弗斯滕伯格决定在以色列度过自己几乎所有的职业生涯,这使该国成为数学,尤其是遍历理论的世界中心。在 1975-1976 学年,他与本杰明·韦斯(Benjamin Weiss)一起在以色列高等研究院进行了为期一年的遍历理论研究,该研究被认为已改变了这一领域。在其众多荣誉之中,弗斯滕伯格还获得了以色列奖(被视为以色列最高荣誉)和沃尔夫数学奖。他还是以色列科学院和美国文理科学院的成员。

弗斯滕伯格于 1958 年与专攻艺术和文化的杂志作家罗谢尔(Rochelle)结婚。他们有五位子女,十六位孙辈,以及越来越多的曾孙辈。

 

 

马古利斯介绍

 


在辉煌的数学生涯中,格雷戈里·马古利斯(Gregory Margulis) 提出了很多颇具影响力的想法,解决了长期悬而未决的问题,并发现了不同数学领域之间的深层联系。他的标志性方法是以出奇和新颖的方式应用遍历理论,从而创造出一个全新的研究领域。

他 1946 年出生于莫斯科,16 岁时因赢得国际数学奥林匹克竞赛银牌而获得了国际认可。他就读于莫斯科国立大学,1970 年在雅科夫·西奈(Yakov Sinai 2014 年阿贝尔奖获得者)的指导下获得博士学位。他的论文提出了一个非常新颖的想法:他创立了一种测量方法(现称为鲍文-马古利斯测量法),使他能够发现双曲空间几何的新特性。他的方法后来启发了很多新的问题和热门研究领域。

年仅 32 岁的 马古利斯凭借其对李群格子的研究,尤其是算术和超刚性定理,赢得了 1978 年的菲尔兹奖。该算术定理指出,秩大于 2 的任一半单李群的不可约格均是算术的,而超刚性定理指出,该格子的表示可扩张成周围李群的表示。超刚性定理证明了遍历理论新的应用,建立了强有力的新方法,在很多领域都颇具影响力。

1978 年雅克·蒂茨(Jacques Tits, 2008 年阿贝尔奖获得者)谈及马古利斯时表示:“毫不夸张地说,他屡次解决了在当时看起来似乎完全无解的问题,让专家们为之一惊。”然而,由于苏联当局拒绝为他提供签证去参加在芬兰赫尔辛基举行的颁奖典礼,马古利斯因此未能拿到菲尔兹奖。1979 年,当苏联学者拥有更多的人身自由时,他才获准出国旅行。20 世纪 80 年代期间,他访问了瑞士、法国和美国的多个研究机构,并于 1991 年定居耶鲁大学,此后便一直待在那里。

在其职业生涯早期,马古利斯曾因犹太人出身遭到歧视。尽管他是该国最杰出的年轻数学家之一,却无法在莫斯科大学找到工作。相反,他在不太知名的信息传播问题研究所工作。然而,与该研究所同事们的接触让他有了一个举世瞩目的发现。他从同事那里了解到一种被称为“扩展图”的连通网络。马古利斯在数日之内便使用表示论(一个抽象的、看似无关的领域)中的概念创立了扩展图的第一个众所周知的例子。他的发现是史无前例的,而且广泛应用在计算机科学领域。

1978 年,当 马古利斯公开现在称之为正规子群定理(关于李群中的格子)时,他再次展现了自己以出人意料的方式证明定理的技巧。他的证据一方面是一种非常原始的顺从群理论的组合,另一方面是表示论中的卡什但性质 (T)。

1984 年,他采用遍历理论中的方法证明了奥本海姆猜想,这是一个于 1929 年首次提出的数论思想。比结果更重要的是以这种方式运用遍历理论的整个想法,而这创造了一个新的领域,现称同质动力学。最近三位菲尔兹奖获得者林登施特劳斯(Lindenstrauss)、米尔扎哈妮、 (Mirzakhani)以及文卡特什(Venkatesh)的研究成果均基于Margulis 的早期思想。

Margulis 的研究成果不仅丰富,而且涉及多个领域。2008 年,《纯数学与应用数学季刊》(Pure and Applied Mathematics Quarterly)刊登了一篇文章,列举了 马古利斯的主要成果,篇幅超过 50 页。

2001 年,马古利斯当选为美国国家科学院院士。他还是罗巴切夫斯基奖和沃尔夫奖获得者。

马古利斯与其夫人 赖莎(Raisa)育有一子,并有一个孙女。

 

 

关注 哆嗒数学网 每天获得更多数学趣文

这个女人是计算机时代开创者之一

本文作者,Harriet Hall,女性杂志编辑。

翻译作者,流水,哆嗒数学网翻译组成员​

翻译作者,Math001

 

 

关注 哆嗒数学网 每天获得更多数学趣文

 

 

纵观人类历史,很多人都有这样的成见:那些开创新局面和改变世界的大英雄、大思想家、大科学家都不可能是女人。


他们说,当男人们在文学、艺术、科学里披荆斩棘,踏浪前行,甚至颠覆旧有观念的时候,女人们只是在家里洗衣做饭,相夫教子。即便大环境如此严重的忽视、贬低和抹杀女性的贡献和工作,但是女人之中有人还是打破了这种固有偏见,让人们不得不承认她们所做到的一切。

 

从2009年开始,每年十月份的第二个星期二叫作阿达纪念日,为了纪念那些在科学、技术、工程和数学(STEM)方面由突出贡献的女性。尤其是纪念这位世界上第一位计算机程序员——阿达·洛芙莱斯。

 


STEM是男性主导的领域,女性所占的比例很低,仅仅只有23%。但是,当一位科学界的领军人物说,“物理学是男人的发明和创造”(physics was invented and built by men)。他显然忽略了居里夫人、莉泽·迈特纳和吴健雄的在物理学中的贡献。


阿达的家庭环境以及她开明的父母让阿达有机会学习到在那个时代只有男性才能接触的课程。这让她能做到其他女人做不到的事情。她利用这个优势做出了许多超越时代的工作。这些工作直到100年后才被完全世人理解。


尽管阿达在生前从未被完全认可,但她的工作为现代计算机的发展铺平了道路,人们因此称她为“数字女王”。


阿达的父亲是著名浪漫主义诗人拜伦,在那个时代禁止女孩子学习数学和科学,但是母亲的坚持下,她接受了这方面的教育。17岁时,她遇到了机械计算器的发明者巴贝奇,巴贝奇后来成为了她的导师。


她在翻译巴贝奇关于计算器方面的文章时,在巴贝奇的基础上又做了进一步的研究。她认为巴贝奇的计算器有可以将音乐、图片和文字转换成数字形式。她的笔记在1843年发表,其中的一些理论过于超前,一个世纪后这些理论才被人们发现阿达其实实现了世界上第一个计算机算法。所以,她被公认为是世界上第一个计算机程序员。


天妒英才,阿达于1852年去世,年仅36岁,死后,她被追授过很多荣誉。1980年,美国国防部以她的名字命名了一种计算机语言——Ada语言。而现在,在每年10月都会在阿达纪念日那天缅怀她。

 

 

关注 哆嗒数学网 每天获得更多数学趣文

无穷大的符号像双扭线,它们有关系吗?

作者,Geek学院,哆嗒数学网群友

原文链接:https://chaoli.club/index.php/4843

 

 

关注 哆嗒数学网 每天获得更多数学趣文

 


相信大家对双扭线的形状都不会感到陌生,今天我们就来聊聊它的方方面面。

 

一、作为数学对象的双纽线


双纽线 或者说lemniscate ,词源是拉丁语“lemniscus ”,古希腊语λημνῐ́σκος(lēmnískos),即指缎带。确切地说,双纽线在数学中指代着多种不同缎带般的8字形曲线,但一般特指伯努利双纽线 (Lemniscate of Bernoulli )。它不仅是所有双纽线中最为人们熟知的,同时数学上也是内涵最丰富的几何对象之一。
直角坐标系下,半径为a的伯努利双纽线是由下述四次多项式方程

 (x²+y²)²=a²(x²-y²)

给出的隐函数的图像,例如

 


就是半径为1的双纽线,这里的半径指的是中心到最远端点的距离。
由定义可知双纽线是某个(二元)四次多项式在平面上的零点,所以双纽线是一条四次平面曲线(quartic plane curve ),从而也是一条代数曲线。对定义稍加分析不难发现,就像圆一样,不同半径的双纽线都是彼此相似的,换句话说双纽线的形状是唯一的。应用一元二次方程的知识,容易通过计算发现半径为1的双纽线高为√2/4。


二、伯努利双纽线的诞生


双纽线的英文单词“lemniscate”最早于1694年被雅各布·伯努利 (Jacob Bernoulli ,1654-1705)用来描述他所发现的双纽线,他为了解决莱布尼兹的等时曲线问题,想找到一条和某(工程力学相关的)超越曲线有相同弧长函数的代数曲线提出了这条曲线。1694年9月《教师学报》(Acta Eruditorum )发表了雅各布的这项研究。下图是1695年12月雅各布发表的研究中的配图,描绘了伯努利双纽线与等时曲线的关系:

 


巧合的是,雅各布·伯努利的弟弟约翰·伯努利 (Johann Bernoulli ,1667-1748)为了解决莱布尼兹的等时曲线问题也独立发现了伯努利双纽线,然而1694年10月《教师学报》(同一份期刊)上才发表了他的结果,仅仅晚了一个月。毫无疑问,争执解答等时问题的优先权成了兄弟间的无数纷争之一。


值得一提的是,早在1680年著名天文学家卡西尼 (Cassini ,1625-1712)提出过一族曲线即卡西尼卵形线 (Cassini oval )试图来描述地球与太阳相对运动轨迹(虽然卡西尼对土星研究有着巨大贡献,但这一点他完全是迷信了)。伯努利双纽线便是卡西尼卵形线的特例,但毕竟出发动机不同,卡西尼从未注意过它,所以数学史上将伯努利双纽线的发现归功于伯努利们是完全合适的。


有一些资料指出,伯努利双纽线的诞生是对椭圆定义的简单推广,也就是到两定点之积为定值的曲线。虽然这个定义正确并且自然,但这是完全不符合史实的。这种曲线就是卡西尼卵形线,然而不论是伯努利双纽线还是卡西尼卵形线,上述史料告诉我们历史上都有着更强有力的动机让人们提出它。现实数学中,几乎每个重要概念提出的动机都是只有考察数学史才可能得知的强有力的动机,数学中几乎没有任何一个重要概念的提出动机仅仅是由于形式上简单自然的,因为这不足以让人有必要去发展它。


三、作为符号的双纽线


毫无疑问,每个人看到伯努利双纽线以后都会想到无穷大,很让人怀疑是不是规定过无穷大的记号就得长成伯努利双纽线的样子,然而并没有过这种规定。


1655年,数学家沃利斯 (Wallis ,1616-1703)在其著作中用符号“∞ ”作为无穷大的记号 :


失望的是,他完全没有说明任何理由。有一种推测是它长得像罗马数字里的1000,即“CIƆ”,因为有时会用它表示“许多”的概念,还有一种推测是认为和最后一个希腊字母“ω”长得像。


虽然据其形状可以称之为双纽线,但此时和伯努利双纽线绝对没有任何关系,因为这是它被发现前39年的事情,此后两者之间也依旧没有直接关联。简而言之,表示无穷大用的双纽线就只是一条长得好看点的双纽线而已。双纽线作为符号,在社会文化中也逐渐频繁出现,现在几乎是无处不在了。它不仅用来表示无穷大,也逐渐承载了越来越多的含义,这些含义往往与各种神秘概念相关。


可以相信的是,在Wallis之前,双纽线并不会作为符号承担任何含义。所有以双纽线作为符号的事情,必定是Wallis之后的了。

 

 

 

关注 哆嗒数学网 每天获得更多数学趣文