证明所有的代数数构成一个数域的优雅初等证明

$p(t)=a_0+a_1x+\cdots+a_{m-1}x^{m-1}+t^m$

 

$q(t)=b_0+b_1x+\cdots+b_{m-1}x^{m-1}+t^n$

 

其中每个$a_i,b_i$是有理数,$a,b$分别是$p(x),q(x)$的根。

 

如何证明$a+b,ab,a-b,b/a$(分母始终不为零)是某个有理系数多项式方程的根?

 

就$a+b,ab$比较麻烦。

 

提纲:

1、 抽象代数证明

因为 $Q(a,b)$是有限扩张,所以是代数扩张,所以$a+b,ab$都在这个扩域内,所以是代数数。

缺点:对大部分人来讲,抽象代数的概念过于高端。而且是存在性证明。没法指出$a+b,ab$是哪个方程的根。

 

2、 一般高等代数数的初等证明

设$\alpha_1,\alpha_2\cdots,\alpha_m$和$\beta_1,\beta_2\cdots,\beta_n$是分别是$p(t),q(t)$全部根。于是合在一起是$p(t)q(t)$的全部根。

于是$r(x) = \prod\limits_{i}^m\prod\limits_{j}^n(x-\alpha_i-\beta_j)$。 把$r(x)$看成$\alpha_i,\beta_j$的对称多项式,所以展开后每个$x^k$次方的系数也是对称多项式。把这些对称多项式用初等对称多项式表示,韦达定理对照$p(t)q(t)$的系数。而$a+b$为$r(x)$中的一个根。

$ab$把$-\alpha_i-\beta_j$换成$\alpha_i\beta_j$同理。

 

缺点:过于暴力。如果要找具体的方程,过程似乎不太优雅。

 

方法3 推荐的优雅做法。

设$A,B$的特征多项式相应为$p(t),q(t)$。比如用相伴矩阵

$A = \left(\begin{matrix}0&0&\dots &0&-a_{0}\\1&0&\dots&0&-a_{1}\\0&1&\dots &0&-a_{2}\\\vdots &\vdots &\ddots &\vdots &\vdots \\0&0&\dots &1&-a_{{n-1}}\end{matrix}\right)$

 

定义运算$\otimes$,对于矩阵$C=(c_{ij})_{m\times n}$,$D=(d_{ij})_{p\times q}$

$C\otimes D = \left(\begin{matrix}c_{11}D&c_{12}D&\dots &c_{1n}D\\c_{21}D&c_{22}D&\dots&c_{2n}D\\\vdots &\vdots &\ddots  &\vdots \\c_{n1}D&c_{n2}D&\dots &c_{nn}D&\end{matrix}\right)$

 

就是把矩阵按$C$中数字倍数放大$D$然后拍成一个更大的$mp\times nq$矩阵。这实际上是张量积,可以不强调这一点,看成一个矩阵拼图游戏。

 

那么可以证明$A\otimes B$的特征值有$ab$,$I_m\otimes A + B\otimes I_n$的特征值有$a+b$

 

标签: none

评论已关闭