猴年里介绍一个关于猴子的定理

 

 

关注微信:DuoDaaMath 每天获得更多数学趣文

新浪微博:http://weibo.com/duodaa

 

 

 

我们刚刚进入了猴年,而数学上竟然有一个与猴子有关的有趣定理:无限猴子定理。而且这还是一个非常著名的定理。

 

无限猴子定理是来自波莱尔一本1909年出版谈概率的书籍,当中介绍了“打字的猴子”的概念。这个定理是概率论中的柯尔莫哥洛夫的零一律的其中一个命题的例子。不过,当波莱尔在书中提出零一律的这个特例时,柯尔莫哥洛夫的一般叙述并未给出(柯尔莫哥洛夫那本概率论的著作直到1933年才出版)。

 

零一律是概率论中的一个定律,它是安德雷·柯尔莫哥洛夫发现的,因此有时也叫柯尔莫哥洛夫零一律。其内容是:有些事件发生的概率不是几乎一(肯定发生),就是几乎零(肯定不发生)。这样的事件被称为“尾事件”。尾事件是由无限多的随机变量的序列来定义的。比如它不是与X1的值无关。比如假如我们扔无限多次银币,则连续100次数字面向上的事件是一个尾事件。

 

关于此定理的叙述为:有无限只猴子用无限的时间会产生特定的文章。其实不必要出现了两件无限的事物,一只猴子打字无限次已经足够打出任何文章,而无限只猴子则能即时产生所有可能的文章。

 

其他取代的叙述,可能是用英国博物馆或美国国会图书馆取代法国国家图书馆;另一个常见的版本是英语使用者常用的,就是猴子会打出莎士比亚的著作。

 

 

不过,还真有人为这个定理做实验。现实的实验中,猴子在使用键盘时通常会连按某一个键或拍击键盘,最终打出的文字不可能成为一个完整的句子。我只能说,要不时间不够长,要不猴子不够多——要无限嘛!

 

关注微信:DuoDaaMath 每天获得更多数学趣文

新浪微博:http://weibo.com/duodaa

标签: none

评论已关闭